New Configuration for OFCC-Based CM SIMO Filter and its Application as Shadow Filter

Research Article - Electrical Engineering
  • 32 Downloads

Abstract

This paper puts forward a new operational floating current conveyor (OFCC)-based current mode (CM) single input multiple output (SIMO) filter configuration which uses two grounded capacitors, three grounded resistors and three OFCCs. The attractive features of the proposed filter are—use of grounded passive elements; availability of low pass, band pass, high pass and notch filter responses simultaneously at high output impedance; and independent adjustment of filter parameters. These features make the proposed filter suitable from fabrication viewpoint and allow easy cascading. Effect of nonidealities on proposed filter response is also examined. A CM shadow filter is also built by introducing an OFCC-based amplifier and connecting it in a feedback loop of the proposed SIMO filter. This configuration allows adjustment of filter parameters through gain of amplifier. MOS-based implementation of grounded resistors is incorporated to facilitate electronic tuning of filter parameters. The operation of the proposed filters is verified through SPICE simulations using \(0.5\,\upmu \hbox {m}\) technology model parameters from MOSIS (AGILENT). Proposed CM SIMO filter is prototyped using commercially available IC AD844, and experimental response is found to be in close agreement with theoretical ones.

Keywords

Current mode filter Shadow filter Single input multiple output Operational floating current conveyor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sedra, A.S.; Smith, K.C.: Microelectronic Circuits. Oxford University Press, Oxford (2004)Google Scholar
  2. 2.
    Ferri, G.; Guerrini, N.C.: Low Voltage Low Power CMOS Current Conveyors. Kluwer Academic Publishers, Boston (2003)Google Scholar
  3. 3.
    Ibrahim, M.A.; Minaei, S.; Kuntman, H.: A 22.5 MHz current-mode KHN-biquad using differential voltage current conveyor and grounded passive elements. AEU Int. J. Electron. Commun. 59(5), 311–318 (2005)CrossRefGoogle Scholar
  4. 4.
    Herencsar, N.; Koton, J.; Vrba, K.: Single CCTA-based universal biquadratic filters employing minimum components. Int. J. Comput. Electr. Eng. 1(3), 307–310 (2009)CrossRefGoogle Scholar
  5. 5.
    Yüce, E.; Metin, B.; Cicekoglu, O.: Current-mode biquadratic filters using single cciii and minimum numbers of passive elements. Frequenz 58(9–10), 225–228 (2004)Google Scholar
  6. 6.
    Tangsrirat, W.: Single-input three-output electronically tunable universal current-mode filter using current follower transconductance amplifiers. AEU Int. J. Electron. Commun. 65, 783–787 (2011)CrossRefGoogle Scholar
  7. 7.
    Wang, C.; Xu, J.; Keskin, A.U.; Du, S.; Zhang, Q.: A new current-mode current-controlled SIMO-type universal filter. AEU Int. J. Electron. Commun. 65, 231–234 (2011)CrossRefGoogle Scholar
  8. 8.
    Horng, J.W.: Current-mode and transimpedance-mode universal biquadratic filter using multiple outputs CCIIs. Indian J. Eng. Materials Sci. 17(3), 169–174 (2010)Google Scholar
  9. 9.
    Abdalla, K.K.; Bhaskar, D.R.; Senani, R.: Configuration for realising a current-mode universal filter and dual-mode quadrature single resistor controlled oscillator. IET Circuits Devices Syst. 6(3), 159–167 (2012)CrossRefGoogle Scholar
  10. 10.
    Qadir, A.; Altaf, T.: Current mode canonic OTA-C universal filter with single input and multiple outputs. In: Proceedings of International Conference on Electronic Computer Technology (ICECT’10) pp. 32–34 (2010)Google Scholar
  11. 11.
    Satansup, J.; Tangsrirat, W.: Single-input five-output electronically tunable current-mode biquad consisting of only ZC-CFTAs and grounded capacitors. Radioengineering 20(3), 650–656 (2012)Google Scholar
  12. 12.
    Biolek, D.; Biolkova, V.; Kolka, Z.; Bajer, J.: Single-input multi-output resistorless current-mode Biquad. In: Proceedings of IEEE European Conference on Circuit Theory and Design, pp. 225–228 (2009)Google Scholar
  13. 13.
    Senani, R.; Singh, A.K.: A new universal current mode biquad filter. Frequenz 56, 55–59 (2002)CrossRefGoogle Scholar
  14. 14.
    Senani, R.; Singh, A.K.; Singh, V.K.: New tunable SIMO type current mode universal biquad using only three MOCCs and all grounded passive elements. Frequenz 57(7–8), 160–161 (2003)Google Scholar
  15. 15.
    Senani, R.; Singh, V.K.; Singh, A.K.; Bhaskar, D.R.: Novel electronically controllable current-mode universal biquad filter. IEICE Electron. Express 1, 410–415 (2004)CrossRefGoogle Scholar
  16. 16.
    Soliman, A.M.: Current-mode universal filters using current conveyors: classification and review. Circuits Syst. Signal Process. 27, 405–427 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sağbaş, M.; Köksal, M.: Current-mode state-variable filter. Frequenz 62, 37–42 (2008)Google Scholar
  18. 18.
    Chunhua, W.; Keskin, A.U.; Yang, L.; Qiujing, Z.; Sichun, D.: Minimum configuration insensitive multifunctional current mode biquad using current conveyors and all-grounded passive components. Radioengineering 19(1), 178–184 (2010)Google Scholar
  19. 19.
    Abdalla, K.K.: Universal current-mode biquad employing dual output current conveyors and MO-CCCA with grounded passive elements. Circuits Syst. 4, 83–88 (2013)CrossRefGoogle Scholar
  20. 20.
    Jerabek, J.; Sotner, R.; Vrba, K.: Comparison of the SITO current-mode universal filters using multiple-output current followers. In: Proceedings of the 35th International Conference Telecommunication Signal Process (TSP’12), pp. 406–410 (2012)Google Scholar
  21. 21.
    Yuce, E.: Current-mode electronically tunable biquadratic filters consisting of only CCCIIs and grounded capacitors. Microelectronics J. 40, 1719–1725 (2009)CrossRefGoogle Scholar
  22. 22.
    Kumngern, M.: A new current-mode universal filter with single-input five-output using trans-linear current conveyors. Aust. J. Electr. Electron. Eng. 9(2), 177–184 (2012)CrossRefGoogle Scholar
  23. 23.
    Senani, R.; Singh, B.; Singh, A.K.: New universal current-mode biquad using only three ZC-CFTAs. Radioengineering 21(1), 273–280 (2012)Google Scholar
  24. 24.
    Singh, S.V.; Maheshwari, S.; Chauhan, D.S.: Current-processing current-controlled universal biquad filter. Radioengineering 21(1), 317–323 (2012)Google Scholar
  25. 25.
    Chen, H.P.: Versatile current-mode universal biquadratic filter using DO-CCIIs. Int. J. Electron. 100(7), 1010–1031 (2013)CrossRefGoogle Scholar
  26. 26.
    Chen, H.P.: Current-mode dual-output ICCII-based tunable universal biquadratic filter with low-input and high-output impedances. Int. J. Circuit Theory Appl. 42(4), 376–393 (2014)CrossRefGoogle Scholar
  27. 27.
    Kumngern, M.; Phasukkit, P.; Junnapiya, S.; Khateb, F.; Tungjitkusolmun, S.: ECCCII-based current-mode universal filter with orthogonal control of \(\omega _{{\rm o}}\) and Q. Radioengineering 23(2), 687–696 (2014)Google Scholar
  28. 28.
    Singh, S.V.; Tomar, R.S.; Chauhan, D.S.: Single CFTA based current-mode universal biquad filter. J. Eng. Res. 13(2), 172–186 (2016)CrossRefGoogle Scholar
  29. 29.
    Arora, T.S.; Gupta, M.; Gupta, S.: Current mode universal filter employing operational transconductance amplifier and third generation current conveyor. In: IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), IEEE, pp. 1–4, (2016)Google Scholar
  30. 30.
    Abaci, A.; Yuce, E.: A new DVCC+ based second-order current-mode universal filter consisting of only grounded capacitors. J. Circuits Syst. Comput. 26(9), 1750130 (2017)CrossRefGoogle Scholar
  31. 31.
    Pandey, N.; Nand, D.; Khan, Z.: Single input four output current mode filter using operational floating current conveyor. J. Act. Passiv. Compon. 2013, 1–8 (2013)Google Scholar
  32. 32.
    Parveen, T.: OFC based high output impedance current mode simo universal biquadratic filter. In: International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), IEEE. pp. 134–136 (2011)Google Scholar
  33. 33.
    Toumazou, C.; Payne, A.; Lidgey, F.J.: Operational floating conveyor. Electron. Lett. 27(8), 651–652 (1991)CrossRefGoogle Scholar
  34. 34.
    Khan, A. A.; Al-Turaigi, M. A.; El-Ela, M. A.: Operational floating current conveyor: characteristics, modelling and applications. In: Proceedings of IEEE Instrumentation and Measurement Technology Conference, Hamamtsu, Japan. pp. 788–790 (1994)Google Scholar
  35. 35.
    Ghallab, Y. H.; El-Ela, M. A.; Elsaid, M.H.: Operational floating current conveyor: characteristics, modeling and experimental results. In: Proceedings of 11th International Conference Microelectron (ICM’99) IEEE, Kuwait pp. 59–62 (1999)Google Scholar
  36. 36.
    Lakys, Y.; Fabre, A.: Multistandard transceivers: State of the art and a new versatile implementation for fully active frequency agile filters. Analog Integr. Circuits Signal Process. 74(1), 63–78 (2012)CrossRefGoogle Scholar
  37. 37.
    Pandey, N.; Sayal, A.; Choudhary, R.; Pandey, R.: Design of CDTA and VDTA based frequency agile filters. Adv. Electron. 2014, 1–15 (2014)CrossRefGoogle Scholar
  38. 38.
    Roy, S.C.D.: ’Shadow’ filters-a new family of electronically tunable filters. IETE J. Education. 51(2–3), 75–78 (2010)CrossRefGoogle Scholar
  39. 39.
    Lakys, Y.; Fabre, A.: Shadow filters generalisation to Nth-class. Electron. Lett. 46(14), 985–986 (2010)CrossRefGoogle Scholar
  40. 40.
    Abuelma’atti, M.T.; Almutairi, N.R.: New current-feedback operational-amplifier based shadow filters. Analog Integr. Circuits Signal Process. 86(3), 471–480 (2016)CrossRefGoogle Scholar
  41. 41.
    Lakys, Y.; Fabre, A.: Shadow filters–a new family of second order filters. Electron. Lett. 46(4), 276–277 (2010)CrossRefGoogle Scholar
  42. 42.
    Wang, Z.: 2-MOSFET transresistor with extremely low distortion for output reaching supply voltages. Electron. Lett. 26(13), 951–952 (1990)CrossRefGoogle Scholar
  43. 43.
    Hassan, H.M.; Soliman, A.M.: Novel CMOS realizations of operational floating current conveyor and applications. J. Circuits Syst. Comput. 14(6), 1113–1143 (2005)CrossRefGoogle Scholar
  44. 44.
    Pandey, N.; Nand, D.; Pandey, R.: Generalised operational floating current conveyor based instrumentation amplifier. IET Circuits Dev. Syst. 10(3), 209–219 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Electronics and CommunicationsDelhi Technological UniversityDelhiIndia

Personalised recommendations