Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 5799–5808 | Cite as

Preparation of Chitosan/Bone Char/\(\hbox {Fe}_{3}\hbox {O}_{4}\) Nanocomposite for Adsorption of Hexavalent Chromium in Aquatic Environments

  • Reza Darvishi Cheshmeh Soltani
  • Mahdi SafariEmail author
  • Afshin maleki
  • Reza RezaeeEmail author
  • Pari Teymouri
  • Seyed Enayat Hashemi
  • Reza Ghanbari
  • Yahya Zandsalimi
Research Article - Chemical Engineering


In this study, magnetic chitosan/bone char/\(\hbox {Fe}_{3}\hbox {O}_{4}\) nanocomposite (MCB–\(\hbox {Fe}_{3}\hbox {O}_{4}\) nanocomposite) was prepared and utilized as an adsorbent for the removal of Cr(VI) from aqueous environments. The effects of influencing parameters such as initial concentration of Cr(VI), adsorbent dose, initial pH, mixing rate, salinity and the existing of competing organic compounds on the adsorption of Cr(VI) were investigated. According to the obtained results, the adsorption process followed the pseudo-first-order kinetic model and Langmuir adsorption isotherm model. Decreasing initial pH from 11 to 2 resulted in increasing the removal efficiency (%) from 24.94 to 88.60%, respectively. Also, the efficiency (%) of Cr(VI) removal increased from 33.73 to 98.81% when the dose of adsorbent rose from 0.25 to 4.0 g/L, respectively. The presence of ethanol and humic acid in solution resulted in decreasing the removal efficiency (%) of Cr(VI) ions.


Hexavalent chromium Adsorption Nanocomposite Bone char Polymeric matrix 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Darvishi Cheshmeh Soltani, R.; Jonidi Jafari, A.; Shams Khorramabadi, Gh: Investigation of cadmium(II) ions biosorption onto pretreated dried activated sludge. Am. J. Environ. Sci. 5(1), 41–46 (2009)CrossRefGoogle Scholar
  2. 2.
    Maleki, A.; Pajootan, E.; Hayati, B.: Ethyl acrylate grafted chitosan for heavy metal removal from wastewater: equilibrium, kinetic and thermodynamic studies. J. Taiwan Inst. Chem. Eng. 51, 127–134 (2015). CrossRefGoogle Scholar
  3. 3.
    Sikder, M.T.; Mihara, Y.; Islam, M.S.; Saito, T.; Tanaka, S.; Kurasaki, M.: Preparation and characterization of chitosan-caboxymethyl-\(\upbeta \)-cyclodextrin entrapped nanozero-valent iron composite for Cu(II) and Cr(IV) removal from wastewater. Chem. Eng. J. 236, 378–387 (2014)CrossRefGoogle Scholar
  4. 4.
    Avila, M.; Burks, T.; Akhtar, F.; Göthelid, M.; Lansåker, P.C.; Toprak, M.S.; Muhammed, M.; Uheida, A.: Surface functionalized nanofibers for the removal of chromium(VI) from aqueous solutions. Chem. Eng. J. 245, 201–209 (2014)CrossRefGoogle Scholar
  5. 5.
    Maleki, A.; Hayati, B.; Naghizadeh, M.; Joo, S.W.: Adsorption of hexavalent chromium by metal organic frameworks from aqueous solution. J. Ind. Eng. Chem. 28, 211–216 (2015). CrossRefGoogle Scholar
  6. 6.
    Zhang, L.; Xia, W.; Teng, B.; Liu, X.; Zhang, W.: Zirconium cross-linked chitosan composite: preparation, characterization and application in adsorption of Cr(VI). Chem. Eng. J. 229, 1–8 (2013)CrossRefGoogle Scholar
  7. 7.
    Wang, H.; Yuan, X.; Wu, Y.; Zeng, G.; Chen, X.; Leng, L.; Wu, Z.; Jiang, L.; Li, H.: Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction. J. Hazard. Mater. 286, 187–194 (2015). CrossRefGoogle Scholar
  8. 8.
    Chakrabarti, S.; Chaudhuri, B.; Bhattacharjee, S.; Ray, A.K.; Dutta, B.K.: Photo-reduction of hexavalent chromium in aqueous solution in the presence of zinc oxide as semiconductor catalyst. Chem. Eng. J. 153(1–3), 86–93 (2009). CrossRefGoogle Scholar
  9. 9.
    Kim, Y.; Joo, H.; Her, N.; Yoon, Y.; Sohn, J.; Kim, S.; Yoon, J.: Simultaneously photocatalytic treatment of hexavalent chromium [Cr(VI)] and endocrine disrupting compounds (EDCs) using rotating reactor under solar irradiation. J. Hazard. Mater. 288, 124–133 (2015). CrossRefGoogle Scholar
  10. 10.
    Xu, G.-R.; Wang, J.-N.; Li, C.-J.: Preparation of hierarchically nanofibrous membrane and its high adaptability in hexavalent chromium removal from water. Chem. Eng. J. 198–199, 310–317 (2012). CrossRefGoogle Scholar
  11. 11.
    Misra, R.; Jain, S.; Khatri, P.: Iminodiacetic acid functionalized cation exchange resin for adsorptive removal of Cr(VI), Cd(II), Ni(II) and Pb(II) from their aqueous solutions. J. Hazard. Mater. 185(2), 1508–1512 (2011)CrossRefGoogle Scholar
  12. 12.
    Golder, A.K.; Chanda, A.K.; Samanta, A.N.; Ray, S.: Removal of hexavalent chromium by electrochemical reduction-precipitation: investigation of process performance and reaction stoichiometry. Sep. Purif. Technol. 76(3), 345–350 (2011). CrossRefGoogle Scholar
  13. 13.
    Michailides, M.K.; Tekerlekopoulou, A.G.; Akratos, C.S.; Coles, S.; Pavlou, S.; Vayenas, D.V.: Molasses as an efficient low-cost carbon source for biological Cr(VI) removal. J. Hazard. Mater. 281, 95–105 (2015). CrossRefGoogle Scholar
  14. 14.
    Hossini, H.; Rezaee, A.; Rastegar, S.O.; Hashemi, S.; Safari, M.: Equilibrium and kinetic studies of chromium adsorption from wastewater by functionalized multi-wall carbon nanotubes. React. Kinet. Mech. Catal. 112(2), 371–382 (2014)CrossRefGoogle Scholar
  15. 15.
    Yao, W.; Rao, P.; Lo, I.M.; Zhang, W.; Zheng, W.: Preparation of cross-linked magnetic chitosan with quaternary ammonium and its application for Cr(VI) and P(V) removal. J. Environ. Sci. 26(12), 2379–2386 (2014)CrossRefGoogle Scholar
  16. 16.
    Aydın, Y.A.; Aksoy, N.D.: Adsorption of chromium on chitosan: optimization, kinetics and thermodynamics. Chem. Eng. J. 151(1), 188–194 (2009)CrossRefGoogle Scholar
  17. 17.
    Fu, F.; Han, W.; Tang, B.; Hu, M.; Cheng, Z.: Insights into environmental remediation of heavy metal and organic pollutants: simultaneous removal of hexavalent chromium and dye from wastewater by zero-valent iron with ligand-enhanced reactivity. Chem. Eng. J. 232, 534–540 (2013)CrossRefGoogle Scholar
  18. 18.
    Hassani, A.; Soltani, R.D.C.; Karaca, S.; Khataee, A.: Preparation of montmorillonite-alginate nanobiocomposite for adsorption of a textile dye in aqueous phase: isotherm, kinetic and experimental design approaches. J. Ind. Eng. Chem. 21, 1197–1207 (2015)CrossRefGoogle Scholar
  19. 19.
    Darvishi Cheshmeh Soltani, R.; Khataee, A.R.; Godini, H.; Safari, M.; Ghanadzadeh, M.J.; Rajaei, M.S.: Response surface methodological evaluation of the adsorption of textile dye onto biosilica/alginate nanobiocomposite: thermodynamic, kinetic, and isotherm studies. Desalin. Water Treat. 56(5), 1389–1402 (2015)CrossRefGoogle Scholar
  20. 20.
    Konicki, W.; Pełech, I.; Mijowska, E.; Jasińska, I.: Adsorption kinetics of acid dye acid red 88 onto magnetic multi-walled carbon nanotubes-\(\text{ Fe }_{3}\text{ C }\) nanocomposite. Clean Soil Air Water 42(3), 284–294 (2014)CrossRefGoogle Scholar
  21. 21.
    Chavez-Guajardo, A.E.; Medina-Llamas, J.C.; Maqueira, L.; Andrade, C.A.S.; Alves, K.G.B.; de Melo, C.P.: Efficient removal of Cr(VI) and Cu(II) ions from aqueous media by use of polypyrrole/maghemite and polyaniline/maghemite magnetic nanocomposites. Chem. Eng. J. 281, 826–836 (2015)CrossRefGoogle Scholar
  22. 22.
    Chauke, V.P.; Maity, A.; Chetty, A.: High-performance towards removal of toxic hexavalent chromium from aqueous solution using graphene oxide-alpha cyclodextrin-polypyrrole nanocomposites. J. Mol. Liq. 211, 71–77 (2015)CrossRefGoogle Scholar
  23. 23.
    Yao, W.; Ni, T.; Chen, S.; Li, H.; Lu, Y.: Graphene/\(\text{ Fe }_3\text{ O }_4\)@ polypyrrole nanocomposites as a synergistic adsorbent for Cr(VI) ion removal. Compos. Sci. Technol. 99, 15–22 (2014)CrossRefGoogle Scholar
  24. 24.
    Chen, L.-F.; Liang, H.-W.; Lu, Y.; Cui, C.-H.; Yu, S.-H.: Synthesis of an attapulgite clay@ carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water. Langmuir 27(14), 8998–9004 (2011)CrossRefGoogle Scholar
  25. 25.
    Sureshkumar, V.; Daniel, S.C.G.K.; Ruckmani, K.; Sivakumar, M.: Fabrication of chitosan–magnetite nanocomposite strip for chromium removal. Appl. Nanosci. 6(2), 277–285 (2016)CrossRefGoogle Scholar
  26. 26.
    Beheshti, H.; Irani, M.; Hosseini, L.; Rahimi, A.; Aliabadi, M.: Removal of Cr(VI) from aqueous solutions using chitosan/MWCNT/\(\text{ Fe }_{3}\text{ O }_{4}\) composite nanofibers-batch and column studies. Chem. Eng. J. 284, 557–564 (2016)CrossRefGoogle Scholar
  27. 27.
    Darvishi Cheshmeh Soltani, R.; Khataee, A.R.; Safari, M.; Joo, S.W.: Preparation of bio-silica/chitosan nanocomposite for adsorption of a textile dye in aqueous solutions. Int. Biodeterior. Biodegrad. 85, 383–391 (2013). CrossRefGoogle Scholar
  28. 28.
    Ren, Y.; Abbood, H.A.; He, F.; Peng, H.; Huang, K.: Magnetic EDTA-modified chitosan/\(\text{ SiO }_{2}/\text{ Fe }_{3}\text{ O }_{4}\) adsorbent: preparation, characterization, and application in heavy metal adsorption. Chem. Eng. J. 226, 300–311 (2013)CrossRefGoogle Scholar
  29. 29.
    Hossini, H.; Darvishi Cheshmeh Soltani, R.; Safari, M.; Maleki, A.; Rezaee, R.; Ghanbari, R.: The application of a natural chitosan/bone char composite in adsorbing textile dyes from water. Chem. Eng. Commun. 204(9), 1082–1093 (2017). CrossRefGoogle Scholar
  30. 30.
    Pan, X.; Wang, J.; Zhang, D.: Sorption of cobalt to bone char: kinetics, competitive sorption and mechanism. Desalination 249(2), 609–614 (2009)CrossRefGoogle Scholar
  31. 31.
    Brunson, L.R.; Sabatini, D.A.: Practical considerations, column studies and natural organic material competition for fluoride removal with bone char and aluminum amended materials in the Main Ethiopian Rift Valley. Sci. Total Environ. 488–489, 580–587 (2014). CrossRefGoogle Scholar
  32. 32.
    Hashemi, S.; Rezaee, A.; Nikodel, M.; Ganjidost, H.; Mousavi, S.M.: Equilibrium and kinetic studies of the adsorption of sodium dodecyl sulfate from aqueous solution using bone char. React. Kinet. Mech. Catal. 109(2), 433–446 (2013)CrossRefGoogle Scholar
  33. 33.
    Kumari, M.; Pittman, C.U.; Mohan, D.: Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite \((\text{ Fe }_{3}\text{ O }_{4})\) nanospheres. J. Colloid Interface Sci. 442, 120–132 (2015)CrossRefGoogle Scholar
  34. 34.
    Zhang, H.; Huang, F.; Liu, D.; Shi, P.: Highly efficient removal of Cr(VI) from wastewater via adsorption with novel magnetic \(\text{ Fe }_{3}\text{ O }_{4}\)@C@ MgAl-layered double-hydroxide. Chin. Chem. Lett. 26(9), 1137–1143 (2015)CrossRefGoogle Scholar
  35. 35.
    Pan, C.; Hu, B.; Li, W.; Sun, Y.; Ye, H.; Zeng, X.: Novel and efficient method for immobilization and stabilization of B-d-galactosidase by covalent attachment onto magnetic \(\text{ Fe }_{3}\text{ O }_{4}\)-chitosan nanoparticles. J. Mol. Catal. B Enzym. 61(3–4), 208–215 (2009). CrossRefGoogle Scholar
  36. 36.
    Luo, M.; Yuan, S.; Tong, M.; Liao, P.; Xie, W.; Xu, X.: An integrated catalyst of Pd supported on magnetic \(\text{ Fe }_{3}\text{ O }_{4}\) nanoparticles: simultaneous production of \(\text{ H }_{2}\text{ O }_{2}\) and \(\text{ Fe }^{2+}\) for efficient electro-fenton degradation of organic contaminants. Water Res. 48, 190–199 (2014). CrossRefGoogle Scholar
  37. 37.
    Kiransan, M.; Soltani, R.D.C.; Hassani, A.; Karaca, S.; Khataee, A.: Preparation of cetyltrimethylammonium bromide modified montmorillonite nanomaterial for adsorption of a textile dye. J. Taiwan Inst. Chem. Eng. 45(5), 2565–2577 (2014)CrossRefGoogle Scholar
  38. 38.
    Cazetta, A.L.; Martins, A.C.; Pezoti, O.; Bedin, K.C.; Beltrame, K.K.; Asefa, T.; Almeida, V.C.: Synthesis and application of NS-doped mesoporous carbon obtained from nanocasting method using bone char as heteroatom precursor and template. Chem. Eng. J. 300, 54–63 (2016). CrossRefGoogle Scholar
  39. 39.
    Reynel-Avila, H.E.; Mendoza-Castillo, D.I.; Bonilla-Petriciolet, A.: Relevance of anionic dye properties on water decolorization performance using bone char: adsorption kinetics, isotherms and breakthrough curves. J. Mol. Liq. 219, 425–434 (2016). CrossRefGoogle Scholar
  40. 40.
    Tang, P.; Shen, J.; Hu, Z.; Bai, G.; Wang, M.; Peng, B.; Shen, R.; Linghu, W.: High-efficient scavenging of U(VI) by magnetic \(\text{ Fe }_{3}\text{ O }_{4}\)@gelatin composite. J. Mol. Liq. 221, 497–506 (2016). CrossRefGoogle Scholar
  41. 41.
    Zhu, K.; Duan, Y.; Wang, F.; Gao, P.; Jia, H.; Ma, C.; Wang, C.: Silane-modified halloysite/\(\text{ Fe }_3\text{ O }_4\) nanocomposites: Simultaneous removal of Cr(VI) and Sb(V) and positive effects of Cr(VI) on Sb(V) adsorption. Chem. Eng. J. 311, 236–246 (2017). CrossRefGoogle Scholar
  42. 42.
    Darvishi Cheshmeh Soltani, R.; Safari, M.; Maleki, A.; Rezaee, R.; Shahmoradi, B.; Shahmohammadi, S.; Ghahramani, E.: Decontamination of arsenic(V)-contained liquid phase utilizing \(\text{ Fe }_3\text{ O }_4\)/bone char nanocomposite encapsulated in chitosan biopolymer. Environ. Sci. Pollut. Res. 24(17), 15157–15166 (2017). CrossRefGoogle Scholar
  43. 43.
    Dizge, N.; Keskinler, B.; Barlas, H.: Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin. J. Hazard. Mater. 167(1), 915–926 (2009)CrossRefGoogle Scholar
  44. 44.
    Shams Khorramabadi, G.; Darvishi Cheshmeh Soltani, R.; Rezaee, A.; Khataee, A.R.; Jonidi Jafari, A.: Utilisation of immobilised activated sludge for the biosorption of chromium(VI). Can. J. Chem. Eng. 90, 1539–1546 (2012)CrossRefGoogle Scholar
  45. 45.
    Teymouri, P.; Ahmadi, M.; Babaei, A.A.; Ahmadi, K.; Jaafarzadeh, N.: Biosorption studies on NaCl-modified ceratophyllum demersum: removal of toxic chromium from aqueous solution. Chem. Eng. Commun. 200(10), 1394–1413 (2013)CrossRefGoogle Scholar
  46. 46.
    Hassani, A.; Kiranşan, M.; Darvishi Cheshmeh Soltani, R.; Khataee, A.; Karaca, S.: Optimization of the adsorption of a textile dye onto nanoclay using a central composite design. Turk. J. Chem. 39, 734–749 (2015)CrossRefGoogle Scholar
  47. 47.
    Darvishi Cheshmeh Soltani, R.; Rezaee, A.; Shams Khorramabadi, G.; Yaghmaeian, K.: Optimization of lead(II) biosorption in an aqueous solution using chemically modified aerobic digested sludge. Water Sci. Technol. 63(1), 129–135 (2011)CrossRefGoogle Scholar
  48. 48.
    Darvishi Cheshmeh Soltani, R.; Safari, M.; Rezaee, A.; Godini, H.: Application of a compound containing silica for removing ammonium in aqueous media. Environ. Prog. Sustain. Energy 34(1), 105–111 (2015)CrossRefGoogle Scholar
  49. 49.
    Darvishi Cheshmeh Soltani, R.; Safari, M.; Maleki, A.; Godini, H.; Pordel, M.A.: Application of nano-crystalline Iranian diatomite in immobilized form for removal of a textile dye. J. Dispers. Sci. Technol. 37(5), 723–732 (2016)CrossRefGoogle Scholar
  50. 50.
    Zou, X.; Pan, J.; Ou, H.; Wang, X.; Guan, W.; Li, C.; Yan, Y.; Duan, Y.: Adsorptive removal of Cr(III) and Fe(III) from aqueous solution by chitosan/attapulgite composites: equilibrium, thermodynamics and kinetics. Chem. Eng. J. 167(1), 112–121 (2011). CrossRefGoogle Scholar
  51. 51.
    Liu, Y.; Chen, M.; Yongmei, H.: Study on the adsorption of Cu(II) by EDTA functionalized \(\text{ Fe }_{3}\text{ O }_{4}\) magnetic nano-particles. Chem. Eng. J. 218, 46–54 (2013)CrossRefGoogle Scholar
  52. 52.
    Taleb, K.; Markovski, J.; Milosavljevic, M.; Marinovic-Cincovic, M.; Rusmirovic, J.; Ristic, M.; Marinkovic, A.: Efficient arsenic removal by cross-linked macroporous polymer impregnated with hydrous iron oxide: material performance. Chem. Eng. J. 279, 66–78 (2015). CrossRefGoogle Scholar
  53. 53.
    Gomez-Pastora, J.; Bringas, E.; Ortiz, I.: Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem. Eng. J. 256, 187–204 (2014). CrossRefGoogle Scholar
  54. 54.
    Ali, I.: New generation adsorbents for water treatment. Chem. Rev. 112(10), 5073–5091 (2012). CrossRefGoogle Scholar
  55. 55.
    Bystrzejewska-Piotrowska, G.; Golimowski, J.; Urban, P.L.: Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag. (Oxf) 29(9), 2587–2595 (2009). CrossRefGoogle Scholar
  56. 56.
    Sanchez, A.; Recillas, S.; Font, X.; Casals, E.; Gonzalez, E.; Puntes, V.: Ecotoxicity of, and remediation with, engineered inorganic nanoparticles in the environment. TrAC Trends Anal. Chem. 30(3), 507–516 (2011). CrossRefGoogle Scholar
  57. 57.
    Bhatt, I.; Tripathi, B.N.: Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82(3), 308–317 (2011). CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Reza Darvishi Cheshmeh Soltani
    • 1
  • Mahdi Safari
    • 2
    • 3
    Email author
  • Afshin maleki
    • 2
  • Reza Rezaee
    • 2
    • 3
    Email author
  • Pari Teymouri
    • 2
  • Seyed Enayat Hashemi
    • 4
  • Reza Ghanbari
    • 5
  • Yahya Zandsalimi
    • 2
  1. 1.Department of Environmental Health, School of HealthArak University of Medical SciencesArakIran
  2. 2.Environmental Health Research CenterKurdistan University of Medical SciencesSanandajIran
  3. 3.Department of Environmental Health Engineering, Faculty of HealthKurdistan University of Medical SciencesSanandajIran
  4. 4.Department of Environmental Health, School of HealthBushehr University of Medical SciencesBushehrIran
  5. 5.Department of Environmental Health Engineering, School of Public HealthQazvin University of Medical SciencesQazvinIran

Personalised recommendations