Skip to main content
Log in

Optimization and Kinetic Model Development for Photocatalytic Dye Degradation

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the carbon-doped zirconium dioxide (\(\hbox {ZrO}_{2}\)–C) nanocatalyst was synthesized by sol–gel method and was used for the degradation of basic red 46 (BR46) in water. In order to optimize the dye removal efficiency, different experimental variables involving pH, \(\hbox {ZrO}_{2}\)–C concentration, initial BR46 concentration, and light intensity were analyzed by the response surface methodology. Variance analysis showed high determination coefficient values, with \(R^{2}\) and adjusted-\(R^{2}\) of, respectively, 0.9984 and 0.9965, as well as, a satisfactory prediction of the second-order regression model. Optimization results showed a maximum color removal efficiency of 98.4% at the optimal condition with initial pH 11, ZrO2–C concentration \(= 0.15\) g/L, UV light intensity \(= 18\,\hbox {W}\) and the initial dye concentration \(= 5\) mg/L. Finally, a new kinetic model, in the form of Langmuir–Hinshelwood equation, based on the intrinsic element reactions was developed. The results indicated that the developed DDR-II model fitted well with the experimental data and with a minimal value of the mean absolute relative residual (13.08%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, C.S.; Shin, J.W.; An, S.H.; Jang, H.D.; Kim, T.O.: Photodegradation of volatile organic compounds using zirconium-doped TiO2/SiO2 visible light photocatalysts. Chem. Eng. J. 40, 204–206 (2012)

    Google Scholar 

  2. Agorku, E.S.; Pandey, A.C.; Mamba, B.B.; Mishra, A.K.: Gd, C, N, S multi-doped ZrO2 for photocatalytic degradation of indigo carmine dye from synthetic water under simulated solar light. Mater. Today Proc. 2, 3909–3920 (2015)

    Article  Google Scholar 

  3. Khaksar, M.; Amini, M.; Boghaei, D.M.; Chae, K.H.; Gautam, S.: Mn-doped ZrO2 nanoparticles as an efficient catalyst for green oxidative degradation of methylene blue. Catal. Commun. 72, 1–5 (2015)

    Article  Google Scholar 

  4. Sudrajat, H.; Babel, S.; Sakai, H.; Takizawa, S.: Rapid enhanced photocatalytic degradation of dyes using novel N-doped ZrO\(_{2}\). J. Environ. Manag. 165, 224–234 (2016)

    Article  Google Scholar 

  5. Alalm, M.G.; Ookawara, S.; Fukushi, D.; Sato, A.; Tawfik, A.: Improved WO3 photocatalytic efficiency using ZrO\(_{2}\) and Ru for the degradation of carbofuran and ampicillin. J. Hazard. Mater. 302, 225–231 (2016)

    Article  Google Scholar 

  6. López, T.; Alvarez, M.; Tzompantzi, F.; Picquart, M.: Photocatalytic degradation of 2,4-dichlorophenoxiacetic acid and 2,4,6-trichlorophenol with ZrO\(_{2}\) and Mn/ZrO\(_{2}\) sol–gel materials. J. Sol-Gel Sci. Technol. 37, 207–211 (2006)

    Article  Google Scholar 

  7. Basahel, S.N.; Ali, T.T.; Mokhtar, M.; Narasimharao, K.: Influence of crystal structure of nanosized ZrO\(_{2}\) on photocatalytic degradation of methyl orange. Nanoscale Res. Lett. 10, 1–13 (2015)

    Article  Google Scholar 

  8. Gusain, D.; Dubey, S.; Upadhyay, S.N.; Weng, C.H.; Sharma, Y.C.: Studies on optimization of removal of orange G from aqueous solutions by a novel nanoadsorbent. J. Ind. Eng. Chem. 33, 42–45 (2016)

    Article  Google Scholar 

  9. Fakhri, A.; Behrouz, S.; Tyagi, I.; Agarwal, S.; Gupta, V.K.: Synthesis and characterization of ZrO\(_{2}\) and carbon-doped ZrO\(_{2}\) nanoparticles for photocatalytic application. J. Molecul. Liq. 216, 342–346 (2016)

    Article  Google Scholar 

  10. Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  11. Navio, J.A.; Hidalgo, M.C.; Colon, G.; Botta, S.G.; Litter, M.I.: Preparation and physicochemical properties of ZrO\(_{2}\) and Fe/ZrO\(_{2}\) prepared by a sol–gel technique. Langmuir 17, 202–210 (2001)

    Article  Google Scholar 

  12. Botta, S.G.; Navio, J.A.; Hidalgo, M.C.; Restrepo, G.M.; Litter, M.I.: Photocatalytic properties of ZrO\(_{2}\) and Fe/ZrO\(_{2}\) semiconductors prepared by a sol–gel technique. J. Photochem. Photobiol. A Chem. 129, 89–99 (1999)

    Article  Google Scholar 

  13. Sreethawong, T.; Ngamsinlapasathian, S.; Yoshikawa, S.: Synthesis of crystalline mesoporous-assembled ZrO\(_{2}\) nanoparticles via a facile surfactant-aided sol–gel process and their photocatalytic dye degradation activity. Chem. Eng. J. 228, 256–262 (2013)

    Article  Google Scholar 

  14. Matsui, H.; Ohkura, N.; Karuppuchamy, S.; Yoshihara, M.: The effect of surface area on the photo-catalytic behavior of ZrO2/carbon clusters composite materials. Ceram. Int. 39, 5827–5831 (2013)

    Article  Google Scholar 

  15. Turchi, C.S.; Ollis, D.F.: Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J. Catal. 122, 178–192 (1990)

    Article  Google Scholar 

  16. Li, Y.; Sun, S.; Ma, M.; Ouyang, Y.; Yan, W.: Kinetic study and model of the photocatalytic degradation of rhodamine B (RhB) by a TiO\(_{2}\)-coated activated carbon catalyst: effects of initial RhB content, light intensity and TiO\(_{2}\) content in the catalyst. Chem. Eng. J. 142, 147–155 (2008)

    Article  Google Scholar 

  17. Mansouri, M.; Nademi, M.; Olya, M.E.; Lotfi, H.: Study of methyl tert-butyl Ether (MTBE) photocatalytic degradation with UV/TiO\(_{2}\)–ZnO–CuO nanoparticles. J. Chem. Heal. Risks 7, 19–32 (2017)

    Google Scholar 

  18. Ollis, D.F.; Pelizzetti, E.; Serpone, N.: Photocatalyzed destruction of water contaminant. Environ. Sci. Technol. 25, 1522–1529 (1991)

    Article  Google Scholar 

  19. Box, G.E.P.; Draper, N.R.: Empirical Model-Building and Response Surfaces. Wiley, New York (1987)

    MATH  Google Scholar 

  20. Bas, D.; Boyaci, I.H.: Modeling and optimization I: usability of response surface methodology. J. Food Eng. 78, 836–845 (2007)

    Article  Google Scholar 

  21. Akhbari, A.; Zinatizadeh, A.A.L.; Mohammadi, P.; Irandoust, M.; Mansouri, Y.: Process modeling and analysis of biological nutrients removal in an integrated RBC-AS system using response surface methodology. Chem. Eng. J. 168, 269–279 (2011)

    Article  Google Scholar 

  22. Ghorbania, F.; Younesi, H.; Ghasempouri, S.M.; Zinatizadeh, A.A.; Amini, M.; Daneshi, A.: Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chem. Eng. J. 145, 267–275 (2008)

    Article  Google Scholar 

  23. Montgomery, D.C.: Design and Analysis of Experiments, 7th edn. Wiley, New Delhi (2012)

    Google Scholar 

  24. Anupam, K.; Dutta, S.; Bhattacharjee, C.; Datta, S.: Adsorptive removal of chromium (VI) from aqueous solution over powdered activated carbon: optimisation through response surface methodology. Chem. Eng. J. 173, 135–143 (2011)

    Article  Google Scholar 

  25. Aydin, Y.A.; Aksoy, N.D.: Adsorption of chromium on Chitosan: optimization, kinetics and thermodynamics. Chem. Eng. J. 151, 188–198 (2009)

    Article  Google Scholar 

  26. Li, Z.Q.; Lu, C.J.; Xia, Z.P.; Zhou, Y.; Luo, Z.: X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45, 1686–1695 (2007)

    Article  Google Scholar 

  27. Myers, R.H.; Montgomery, D.C.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd edn. Wiley, New York (2002)

    MATH  Google Scholar 

  28. Zhang, J.; Fu, D.; Xu, Y.; Liu, C.: Optimization of parameters on photocatalytic degradation of chloramphenicol using TiO\(_{2}\) as photocatalyist by response surface methodology. J. Environ. Sci. 22, 1281–1289 (2010)

    Article  Google Scholar 

  29. Khataee, A.R.; Fathinia, M.; Aber, S.: Kinetic modeling of liquid phase photocatalysis on supported TiO\(_{2}\) nanoparticles in a rectangular flat-plate photoreactor. Ind. Eng. Chem. Res. 49, 12358–12364 (2010)

    Article  Google Scholar 

  30. Khataee, A.R.; Fathinia, M.; Aber, S.: Kinetic study of photocatalytic decolorization of C.I. Basic Blue 3 solution on immobilized titanium dioxide nanoparticles. Chem. Eng. Res. Des. 89, 2110–2116 (2011)

    Article  Google Scholar 

  31. Amani-Ghadim, A.R.; Dorraji, M.S.S.: Modeling of photocatalyatic process on synthesized ZnO nanoparticles: kinetic model development and artificial neural networks. Appl. Catal. B Environ. 163, 539–546 (2015)

    Article  Google Scholar 

  32. Kaneco, S.; Li, N.; Itoh, K.; Katsumata, H.; Suzuki, T.; Ohta, K.: Titanium dioxide mediated solar photocatalytic degradation of thiram in aqueous solution: kinetics and mineralization. Chem. Eng. J. 148, 50–56 (2009)

    Article  Google Scholar 

  33. Moradi, H.; Sharifnia, S.; Rahimpour, F.: Photocatalytic decolorization of reactive yellow 84 from aqueous solutions using ZnO nanoparticles supported on mineral LECA. Mater. Chem. Phys. 158, 38–44 (2015)

    Article  Google Scholar 

  34. Dutta, S.; Parsons, S.A.; Bhattacharjee, C.; Jarvis, P.; Datta, S.; Bandyopadhyay, S.: Kinetic study of adsorption and photo-decolorization of reactive red 198 on TiO\(_{2}\) surface. Chem. Eng. J. 155, 674–679 (2009)

    Article  Google Scholar 

  35. Terzian, R.; Serpone, N.; Fox, M.A.: Heterogeneousphotocatalyzed oxidation of creosote components: mineralization of xylenols by illuminated TiO\(_{2}\) in oxygenated aqueous media. J. Photochem. Photobiol. A Chem. 90, 125–135 (1995)

    Article  Google Scholar 

  36. Rothenberger, G.; Moser, J.; Graetzel, M.; Serpone, N.; Sharma, D.K.: Charge carrier trapping and recombination dynamics in small semiconductor particles. JACS 107, 8054–8059 (1985)

    Article  Google Scholar 

  37. Arana, J.; Peña Alonso, A.; Doña Rodríguez, J.M.; Herrera Melián, J.A.; González Díaz, O.; Pérez Peña, J.: Comparative study of MTBE photocatalytic degradation with TiO\(_{2}\) and Cu–TiO\(_{2}\). Appl. Catal. B 78, 355–363 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setarehshenas, N., Hosseini, S.H. & Ahmadi, G. Optimization and Kinetic Model Development for Photocatalytic Dye Degradation. Arab J Sci Eng 43, 5785–5797 (2018). https://doi.org/10.1007/s13369-017-3010-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-3010-4

Keywords

Navigation