Skip to main content
Log in

Caesium Salt of Tungstophosphoric Acid Supported on Mesoporous SBA-15 Catalyst for Selective Esterification of Lauric Acid with Glycerol to Monolaurin

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

\(\hbox {Cs}_{2.5}\hbox {H}_{0.5}\hbox {PW}_{12}\hbox {O}_{40}\) supported on SBA-15 catalysts were prepared via two-sequential-step post-impregnation method with different ratios of cesium salt. The synthesized catalysts were then characterized using nitrogen adsorption–desorption, FTIR, EDX, SEM, BET and TGA analyses in order to determine the physicochemical properties of the catalysts. The activity of the catalysts in the esterification of glycerol to monolaurin was investigated under various reaction parameters including catalyst loadings, reaction temperatures and glycerol-to-lauric acid molar ratio. The highest lauric acid conversion (71.8%) with 44.9% of monolaurin yield was obtained using 20 wt%Cs-HPW/SBA-15 catalyst in 4 h at 170 \({^{\circ }}\hbox {C}\) using 4:1 of glycerol-to-lauric acid molar ratio and 2.5 wt% of catalyst loading. This catalyst was stable and reusable for up to three cycles in the esterification reaction without significant loss in catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yusoff, M.H.M.; Abdullah, A.Z.: Catalytic behavior of sulfated zirconia supported on SBA-15 as catalyst in selective glycerol esterification with palmitic acid to monopalmitin. J. Taiwan Inst. Chem. Eng. 60, 199–204 (2016)

    Article  Google Scholar 

  2. Hermida, L.; Abdullah, A.Z.; Mohamed, A.R.: Synthesis of monoglyceride through glycerol esterification with lauric acid over propyl sulfonic acid post-synthesis functionalized SBA-15 mesoporous catalyst. Chem. Eng. J. 174, 668–676 (2011)

    Article  Google Scholar 

  3. Alrouh, F.; Karam, A.; Alshaghel, A.; El-Kadri, S.: Direct esterification of olive-pomace oil using mesoporous silica supported sulfonic acids. Arab. J. Chem. 10(1), S281–S286 (2017)

    Article  Google Scholar 

  4. Simsek, V.; Degirmenci, L.; Murtezaoglu, K.: Synthesis of a silicotungstic acid SBA-15 catalyst for selective monoglyceride production. React. Kinet. Mech. Catal. 117, 773–788 (2016)

    Article  Google Scholar 

  5. Hoo, P.Y.; Abdullah, A.Z.: Direct synthesis of mesoporous 12-tungstophosphoric acid SBA-15 catalyst for selective esterification of glycerol and lauric acid to monolaurate. Chem. Eng. J. 250, 274–287 (2014)

    Article  Google Scholar 

  6. Dias, J.A.; Caliman, E.; Dias, S.C.L.: Effects of cesium ion exchange on acidity of 12-tungstophosphoric acid. Microporous Mesoporous Mater. 76, 221–232 (2004)

    Article  Google Scholar 

  7. Rao, P.M.; Landau, M.V.; Wolfson, A.; Shapira-Tchelet, A.M.; Herskowitz, M.: Cesium salt of a heteropolyacid in nanotubular channels and on the external surface of SBA-15 crystals: preparation and performance as acidic catalysts. Microporous Mesoporous Mater. 80, 43–55 (2005)

    Article  Google Scholar 

  8. Landau, M.V.; Rao, P.M.; Thomas, S.; Pitchon, V.; Zukerman, R.; Vradman, L.; Herskowitz, M.: Application of Cs salt of 12-tungstophosphoric acid supported on SBA-15 mesoporous silica in NOx storage. Top. Catal. 42, 203–207 (2007)

    Article  Google Scholar 

  9. Ibrahim, S.M.; El-Shobaky, G.A.: Catalytic efficiency of cesium and potassium salts of dodecatungstophosphoric acid supported on silica and comparison with H3PW12O40/SiO2. Kinet. Catal. 49, 484–492 (2008)

    Article  Google Scholar 

  10. Chiou, J.; Liu, S.; Ho, K.; Huang, H.; Tang, C.; Wang, C.: Ca-modified Co/SBA-15 catalysts for hydrogen production through ethanol steam reforming. Int. Lett. Chem. Phys. Astron. 5, 1–16 (2014)

    Google Scholar 

  11. Gagea, B.C.; Lorgouilloux, Y.; Altintas, Y.; Jacobs, P.A.; Martens, J.A.: Bifunctional conversion of n-decane over HPW heteropoly acid incorporated into SBA-15 during synthesis. J. Catal. 265, 99–108 (2009)

    Article  Google Scholar 

  12. Niiyama, H.; Saito, Y.; Echigoya, E.: In: Proceedings, 7th International Congress on Catalysis, Tokyo, 1980. Kodansha, Tokyo/Elsevier, Amsterdam (1981)

  13. Gallegos-Suarez, E.; Pérez-Cadenas, M.; Guerrero-Ruiz, A.; Rodriguez-Ramos, I.; Arcoya, A.: Effect of the functional groups of carbon on the surface and catalytic properties of Ru/C catalysts for hydrogenolysis of glycerol. Appl. Surf. Sci. 287, 108–116 (2013)

    Article  Google Scholar 

  14. Ertl, G.; Knözinger, H.; Weitkamp, J.: Preparation of solid catalysts. Wiley, New York (2008)

    Google Scholar 

  15. Khder, A.E.R.S.; Hassan, H.M.A.; El-Shall, M.S.: Acid catalyzed organic transformations by heteropoly tungstophosphoric acid supported on MCM-41. Appl. Catal. A Gen. 411–412, 77–86 (2012)

    Article  Google Scholar 

  16. Olutoye, M.A.; Wong, S.W.; Chin, L.H.; Amani, H.; Asif, M.; Hameed, B.H.: Synthesis of fatty acid methyl esters via the transesterification of waste cooking oil by methanol with a barium-modified montmorillonite K10 catalyst. Renew. Energy 86, 392–398 (2016)

    Article  Google Scholar 

  17. Ravikovitch, P.I.; Neimark, A.V.: Experimental confirmation of different mechanisms of evaporation from ink-bottle type pores:? Equilibrium, pore blocking, and cavitation. Langmuir 18, 9830–9837 (2002)

    Article  Google Scholar 

  18. Van Der Voort, P.; Ravikovitch, P.I.; De Jong, K.P.; Benjelloun, M.; Van Bavel, E.; Janssen, A.H.; Neimark, A.V.; Weckhuysen, B.M.; Vansant, E.F.: A new templated ordered structure with combined micro- and mesopores and internal silica nanocapsules. J. Phys. Chem. B 106, 5873–5877 (2002)

    Article  Google Scholar 

  19. Rao-Ginjupalli, S.; Mugawar, S.; Rajan, N.P.; Balla, P.K.; Komandur, V.R.C.: Vapour phase dehydration of glycerol to acrolein over tungstated zirconia catalysts. Appl. Surf. Science 309, 153–159 (2014)

    Article  Google Scholar 

  20. Qiao, S.Z.; Bhatia, S.K.; Zhao, X.S.: Prediction of multilayer adsorption and capillary condensation phenomena in cylindrical mesopores. Microporous Mesoporous Mater. 65, 287–298 (2003)

    Article  Google Scholar 

  21. Chen, Y.; Zhang, X.-L.; Chen, X.; Dong, B.-B.; Zheng, X.-C.: MCM-41 supported 12-tungstophosphoric acid mesoporous materials: preparation, characterization, and catalytic activities for benzaldehyde oxidation with H2O2. Solid State Sci. 24, 21–25 (2013)

    Article  Google Scholar 

  22. Pistonesi, C.; Juan, A.; Irigoyen, B.; Amadeo, N.: Theoretical and experimental study of methane steam reforming reactions over nickel catalyst. Appl. Surf. Sci. 253, 4427–4437 (2007)

    Article  Google Scholar 

  23. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science 279, 548–552 (1998)

    Article  Google Scholar 

  24. Liu, S.; Wang, X.; Wang, K.; Lv, R.; Xu, Y.: ZnO/ZnS-PdS core/shell nanorods: synthesis, characterization and application for photocatalytic hydrogen production from a glycerol/water solution. Appl. Surf. Sci. 283, 732–739 (2013)

    Article  Google Scholar 

  25. Amani, H.; Ahmad, Z.; Hameed, B.H.: Highly active alumina-supported Cs-Zr mixed oxide catalysts for low-temperature transesterification of waste cooking oil. Appl. Catal. A Gen. 487, 16–25 (2014)

    Article  Google Scholar 

  26. Junior, L.; da Silva, O.; Cavalcanti, R.M.; Matos, TMd; Angelica, R.S.; da Rocha Filho, G.N.; Barros, IdCL: Esterification of oleic acid using 12-tungstophosphoric supported in flint kaolin of the Amazonia. Fuel 108, 604–611 (2013)

    Article  Google Scholar 

  27. Dange, P.N.; Rathod, V.K.: Equilibrium and thermodynamic parameters for heterogeneous esterification of butyric acid with methanol under microwave irradiation. Resour. Effic. Technol. 3, 64–70 (2017)

    Article  Google Scholar 

  28. Hashemizadeh, I.; Abdullah, A.Z.: Influence of process conditions on glycerol esterification catalyzed by tetra-n-butylammonium-modified montmorillonite catalyst. Online J. Sci. Technol. 2, 47–51 (2012)

    Google Scholar 

  29. Hermida, L.; Abdullah, A.; Mohamed, A.: Effects of functionalization conditions of sulfonic acid grafted SBA-15 on catalytic activity in the esterification of glycerol to monoglyceride: a factorial design approach. J. Porous. Mater. 19, 835–846 (2012)

    Article  Google Scholar 

  30. Abouzari-lotf, E.; Nasef, M.M.; Zakeri, M.; Ahmad, A.; Ripin, A.: Composite membranes based on heteropolyacids and their applications in fuel cells. In: Inamuddin, D., Mohammad, A., Asiri, A.M. (eds.) Organic-Inorganic Composite Polymer Electrolyte Membranes: Preparation, Properties, and Fuel Cell Applications, pp. 99–131. Springer, Cham (2017)

    Chapter  Google Scholar 

  31. Macierzanka, A.; Szela̧g, H.: Esterification kinetics of glycerol with fatty acids in the presence of zinc carboxylates? Preparation of modified acylglycerol emulsifiers. Ind. Eng. Chem. Res. 43, 7744–7753 (2004)

    Article  Google Scholar 

  32. Palani, A.; Pandurangan, A.: Esterification of acetic acid over mesoporous Al-MCM-41 molecular sieves. J. Mol. Catal. A Chem. 226, 129–134 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

A Research University Grant (814181) and a Dana Inovasi Awal Grant (AUPI00234) from Universiti Sains Malaysia and a Transdisciplinary Research Grant Scheme (6762001) from the Ministry of Higher Education Malaysia are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Zuhairi Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, S.N.M., Yusoff, M.H.M. & Abdullah, A.Z. Caesium Salt of Tungstophosphoric Acid Supported on Mesoporous SBA-15 Catalyst for Selective Esterification of Lauric Acid with Glycerol to Monolaurin. Arab J Sci Eng 43, 5771–5783 (2018). https://doi.org/10.1007/s13369-017-3009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-3009-x

Keywords

Navigation