Skip to main content
Log in

RTD-A Control for General Multivariable Systems

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

For general multivariable systems including square ones and fat and thin non-square ones, a unified and analytical optimum control law has been derived for the RTD-A controller. A concise interpretation for the general existence of the control law is provided together with a suggestion for judging this existence in practical applications. Three simulation examples are included to demonstrate the flexibility, friendliness, and excellent robustness, anti-noise performance and dynamic control capability of the RTD-A controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Forbes, M.G.; Patwardhan, R.S.; Hamadah, H.; Gopaluni, R.B.: Model predictive control in industry: challenges and opportunities. IFAC-PapersOnLine 48(8), 531–538 (2015)

    Article  Google Scholar 

  2. Cutler, C.R.; Ramaker, B.L.: Dynamic Matrix Control—A Computer Control Algorithm. In: Proceedings of the Joint Automatic Control Conference, San Francisco (1980)

  3. Xi, Y.G.; Li, D.W.; Lin, S.: Model predictive control—status and challenges. Acta Autom. Sin. 39(3), 222–236 (2013)

    Article  MathSciNet  Google Scholar 

  4. Scattolini, R.: Architectures for distributed and hierarchical model predictive control—a review. J. Process Control 19(5), 723–731 (2009)

    Article  Google Scholar 

  5. Rivera, D.E.; Morari, M.; Skogestad, S.: Internal model control: PID controller design. Ind. Eng. Chem. Process Des. Dev. 25(1), 2163–2163 (1986)

    Article  Google Scholar 

  6. Anwar, M.N.; Shamsuzzoha, M.; Pan, S.: A frequency domain PID controller design method using direct synthesis approach. Arab. J. Sci. Eng. 40(4), 995–1004 (2015)

    Article  Google Scholar 

  7. Ogunnaike, B.A.; Mukati, K.: An alternative structure for next generation regulatory controllers: part I: basic theory for design, development and implementation. J. Process Control l6(5), 499–509 (2006)

    Article  Google Scholar 

  8. Mukati, K.; Rasch, M.; Ogunnaike, B.A.: An alternative structure for next generation regulatory controllers. Part II: stability analysis, tuning rules and experimental validation. J. Process Control 19(2), 272–287 (2009)

    Article  Google Scholar 

  9. Anbarasan, K.; Srinivasan, K.: Design of RTDA controller for industrial process using SOPDT model with minimum or non-minimum zero. ISA Trans. 57, 231–244 (2015)

    Article  Google Scholar 

  10. Guan, S.T.; Chu, J.Z.: Research and application of RTD-A controller for multiple input multiple output (MIMO) system. Inf. Control 37(4), 429–434 (2008)

    Google Scholar 

  11. Chu, J.Z.; Du, B.; Chen, J.: Performance analysis and online fuzzy self-tuning of RTD-A controller’s parameters. J. Shanghai Jiaotong Univ. 45(8), 1167–1171 (2011)

    Google Scholar 

  12. Sendjaja, A.Y.; Zhen, F.N.; Si, S.H.; Kariwala, V.: Analysis and tuning of RTD-A controllers. Ind. Eng. Chem. Res. 50(6), 3415–3425 (2011)

    Article  Google Scholar 

  13. Luan, X.L.; Wang, Z.Q.; Liu, F.: Centralized PI control for multivariable non-square systems. Control Decis. 31(5), 811–816 (2016)

    MATH  Google Scholar 

  14. Davison, E.J.: Some properties of minimum phase systems and "squared-down" systems. IEEE Trans. Autom. Control 28(2), 221–222 (1984)

    Article  MathSciNet  Google Scholar 

  15. Treiber, S.: Multivariable control of non-square systems. Ind. Eng. Chem. Process Des. Dev. 23(4), 854–857 (1984)

    Article  Google Scholar 

  16. He, M.J.; Cai, W.J.; Wei, N.; Xie, L.H.: RNGA based control system configuration for multivariable processes. J. Process Control 19(6), 1036–1042 (2009)

    Article  Google Scholar 

  17. Zou, T.; Li, H.Q.; Ding, B.C.; Wang, D.D.: Compatibility and uniqueness analyses of steady state solution for multi-variable predictive control systems. Acta Autom. Sin. 39(5), 519–529 (2013)

    Article  MathSciNet  Google Scholar 

  18. Jin, Q.B.; Hao, F.; Wang, Q.: A multivariable IMC-PID method for non-square large time delay systems using NPSO algorithm. J. Process Control 23(5), 649–663 (2013)

    Article  Google Scholar 

  19. Jin, Q.B.; Liu, Q.: Decoupling proportional-integral-derivative controller design for multivariable processes with time delays. Ind. Eng. Chem. Res. 53(2), 765–777 (2014)

    Article  Google Scholar 

  20. Jin, Q.B.; Du, X.H.; Wang, Q.; Liu, L.Y.: Analytical design 2 DOF IMC control based on inverted decoupling for non square systems with time delay. Can. J. Chem. Eng. 94(7), 1354–1367 (2016)

    Article  Google Scholar 

  21. Yang, S.H.; Wang, X.Z.; Mcgreavy, C.: A multivariable coordinated control system based on predictive control strategy for FCC reactor-regenerator system. Chem. Eng. Sci. 51(11), 2977–2982 (1996)

    Article  Google Scholar 

  22. Zou, T.; Wang, D.; Pan, H.; Yuan, M.; Ji, Z.: From zone model predictive control to double-layered model predictive control. Ciesc J. 64(12), 4474–4483 (2013)

    Google Scholar 

  23. Prett, D.M.; García, C.E.; Ramaker, B.L.: The second shell process control workshop. In: The Shell Process Control Workshop, Butterworths, pp. 325–347 (1987)

  24. Vlachos, C.; Williams, D.; Gomm, J.B.: Solution to the shell standard control problem using genetically tuned PID controllers. Control Eng. Pract. 10(2), 151–163 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This research work was funded by National Natural Science Foundation of China (Project Number: 21676012) and Fundamental Research Funds for the Central Universities (Project Number: YS1404)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jizheng Chu.

Appendix 1: Discretization Method

Appendix 1: Discretization Method

The continuous system model is treated with the equivalent discrete model using the Z-domain discretization method. The zero-order holder is used to obtain the difference equation.

$$\begin{aligned} g_{ij} (s)= & {} \frac{K_{ij} e^{-\alpha _{ij} s}}{\tau _{ij} s+1}\\ g_{ij} (Z)= & {} \mathbf{Z}\left[ {g_h (s)g_{ij} (s)} \right] =\mathbf{Z}\left[ {\frac{1-e^{-Ts}}{s}\cdot \frac{K_{ij} e^{-\alpha _{ij} s}}{\tau _{ij} s+1}} \right] \\&\quad {\mathop {\rightarrow }^{z=e^{Ts}}z^{-\alpha _{ij} /T}(1-z^{-1})\mathbf{Z}\left[ {\frac{1}{s}\cdot \frac{K_{ij} }{\tau _{ij} s+1}} \right] } \\= & {} {z}^{-\alpha _{ij} /T}(1-z^{-1})\mathbf{Z}\left[ {\frac{K_{ij} }{s}-\frac{K_{ij} \tau _{ij} }{\tau _{ij} s+1}} \right] \\= & {} K_{ij} \cdot z^{-\alpha _{ij} /T}(1-z^{-1})\left( {\frac{z}{z-1}-\frac{z}{z-e^{-T/\tau _{ij} }}} \right) \\= & {} K_{ij} \cdot z^{-\alpha _{ij} /T}\cdot \frac{1-e^{-T/\tau _{ij} }}{z-e^{-T/\tau _{ij} }}=\frac{\hat{{y}}_{ij} (z)}{u_j (z)} \\ \end{aligned}$$

difference equation:

$$\begin{aligned} \left( {z-e^{-T/\tau _{ij} }} \right) \cdot \hat{{y}}_{ij} (z)=K_{ij} \cdot z^{-\alpha _{ij} /T}\cdot \left( {1-e^{-T/\tau _{ij} }} \right) \cdot u_j (z) \end{aligned}$$
$$\begin{aligned} \hat{{y}}_{ij} (k+1)=a_{ij} \hat{{y}}_{ij} (k)+b_{ij} u(k-m_{ij} ) \end{aligned}$$
(1)

where \(a_{ij }=e^{-T/\tau ij}, b_{ij}=K_{ij} (1-a_{ij}), m_{ij} = \mathrm{round}({\alpha }_{ij}/T), T\) is the sampling time and k = 0, 1, 2, ... for the current moment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Chu, J. & Chu, M. RTD-A Control for General Multivariable Systems. Arab J Sci Eng 43, 5891–5903 (2018). https://doi.org/10.1007/s13369-017-3008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-3008-y

Keywords

Navigation