Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 5891–5903 | Cite as

RTD-A Control for General Multivariable Systems

  • Yu Sun
  • Jizheng ChuEmail author
  • Minghui Chu
Research Article - Chemical Engineering


For general multivariable systems including square ones and fat and thin non-square ones, a unified and analytical optimum control law has been derived for the RTD-A controller. A concise interpretation for the general existence of the control law is provided together with a suggestion for judging this existence in practical applications. Three simulation examples are included to demonstrate the flexibility, friendliness, and excellent robustness, anti-noise performance and dynamic control capability of the RTD-A controller.


Multivariable system Non-square system RTD-A Robustness Anti-noise performance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research work was funded by National Natural Science Foundation of China (Project Number: 21676012) and Fundamental Research Funds for the Central Universities (Project Number: YS1404)


  1. 1.
    Forbes, M.G.; Patwardhan, R.S.; Hamadah, H.; Gopaluni, R.B.: Model predictive control in industry: challenges and opportunities. IFAC-PapersOnLine 48(8), 531–538 (2015)CrossRefGoogle Scholar
  2. 2.
    Cutler, C.R.; Ramaker, B.L.: Dynamic Matrix Control—A Computer Control Algorithm. In: Proceedings of the Joint Automatic Control Conference, San Francisco (1980)Google Scholar
  3. 3.
    Xi, Y.G.; Li, D.W.; Lin, S.: Model predictive control—status and challenges. Acta Autom. Sin. 39(3), 222–236 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Scattolini, R.: Architectures for distributed and hierarchical model predictive control—a review. J. Process Control 19(5), 723–731 (2009)CrossRefGoogle Scholar
  5. 5.
    Rivera, D.E.; Morari, M.; Skogestad, S.: Internal model control: PID controller design. Ind. Eng. Chem. Process Des. Dev. 25(1), 2163–2163 (1986)CrossRefGoogle Scholar
  6. 6.
    Anwar, M.N.; Shamsuzzoha, M.; Pan, S.: A frequency domain PID controller design method using direct synthesis approach. Arab. J. Sci. Eng. 40(4), 995–1004 (2015)CrossRefGoogle Scholar
  7. 7.
    Ogunnaike, B.A.; Mukati, K.: An alternative structure for next generation regulatory controllers: part I: basic theory for design, development and implementation. J. Process Control l6(5), 499–509 (2006)CrossRefGoogle Scholar
  8. 8.
    Mukati, K.; Rasch, M.; Ogunnaike, B.A.: An alternative structure for next generation regulatory controllers. Part II: stability analysis, tuning rules and experimental validation. J. Process Control 19(2), 272–287 (2009)CrossRefGoogle Scholar
  9. 9.
    Anbarasan, K.; Srinivasan, K.: Design of RTDA controller for industrial process using SOPDT model with minimum or non-minimum zero. ISA Trans. 57, 231–244 (2015)CrossRefGoogle Scholar
  10. 10.
    Guan, S.T.; Chu, J.Z.: Research and application of RTD-A controller for multiple input multiple output (MIMO) system. Inf. Control 37(4), 429–434 (2008)Google Scholar
  11. 11.
    Chu, J.Z.; Du, B.; Chen, J.: Performance analysis and online fuzzy self-tuning of RTD-A controller’s parameters. J. Shanghai Jiaotong Univ. 45(8), 1167–1171 (2011)Google Scholar
  12. 12.
    Sendjaja, A.Y.; Zhen, F.N.; Si, S.H.; Kariwala, V.: Analysis and tuning of RTD-A controllers. Ind. Eng. Chem. Res. 50(6), 3415–3425 (2011)CrossRefGoogle Scholar
  13. 13.
    Luan, X.L.; Wang, Z.Q.; Liu, F.: Centralized PI control for multivariable non-square systems. Control Decis. 31(5), 811–816 (2016)zbMATHGoogle Scholar
  14. 14.
    Davison, E.J.: Some properties of minimum phase systems and "squared-down" systems. IEEE Trans. Autom. Control 28(2), 221–222 (1984)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Treiber, S.: Multivariable control of non-square systems. Ind. Eng. Chem. Process Des. Dev. 23(4), 854–857 (1984)CrossRefGoogle Scholar
  16. 16.
    He, M.J.; Cai, W.J.; Wei, N.; Xie, L.H.: RNGA based control system configuration for multivariable processes. J. Process Control 19(6), 1036–1042 (2009)CrossRefGoogle Scholar
  17. 17.
    Zou, T.; Li, H.Q.; Ding, B.C.; Wang, D.D.: Compatibility and uniqueness analyses of steady state solution for multi-variable predictive control systems. Acta Autom. Sin. 39(5), 519–529 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jin, Q.B.; Hao, F.; Wang, Q.: A multivariable IMC-PID method for non-square large time delay systems using NPSO algorithm. J. Process Control 23(5), 649–663 (2013)CrossRefGoogle Scholar
  19. 19.
    Jin, Q.B.; Liu, Q.: Decoupling proportional-integral-derivative controller design for multivariable processes with time delays. Ind. Eng. Chem. Res. 53(2), 765–777 (2014)CrossRefGoogle Scholar
  20. 20.
    Jin, Q.B.; Du, X.H.; Wang, Q.; Liu, L.Y.: Analytical design 2 DOF IMC control based on inverted decoupling for non square systems with time delay. Can. J. Chem. Eng. 94(7), 1354–1367 (2016)CrossRefGoogle Scholar
  21. 21.
    Yang, S.H.; Wang, X.Z.; Mcgreavy, C.: A multivariable coordinated control system based on predictive control strategy for FCC reactor-regenerator system. Chem. Eng. Sci. 51(11), 2977–2982 (1996)CrossRefGoogle Scholar
  22. 22.
    Zou, T.; Wang, D.; Pan, H.; Yuan, M.; Ji, Z.: From zone model predictive control to double-layered model predictive control. Ciesc J. 64(12), 4474–4483 (2013)Google Scholar
  23. 23.
    Prett, D.M.; García, C.E.; Ramaker, B.L.: The second shell process control workshop. In: The Shell Process Control Workshop, Butterworths, pp. 325–347 (1987)Google Scholar
  24. 24.
    Vlachos, C.; Williams, D.; Gomm, J.B.: Solution to the shell standard control problem using genetically tuned PID controllers. Control Eng. Pract. 10(2), 151–163 (2002)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.College of Information Science and TechnologyBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations