Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 5757–5769 | Cite as

Thermodynamic Analysis on the Thermal Treatment of Electric Arc Furnace Dust-PVC Blends

  • Mohammad Al-HarahshehEmail author
Research Article - Chemical Engineering


This work reports a thermodynamic assessment of EAFD chlorination products stem from thermal decomposition products of PVC. Upon PVC pyrolysis, HCl gas is liberated in conjunction with several volatile organic matters leaving solid carbonaceous residue. EAFD contains appreciable quantities of zinc, iron and lead oxides. These react with HCl to form metal chlorides, if EAFD is added to the PVC as a dechlorination agent. Selective chlorination of zinc and lead present in EAFD leaving iron in its oxide form is of an apparent commercial value. Detailed thermodynamic analysis of EAFD chlorination by HCl was performed considering the effects of several variables. These include temperature, amount of chlorination agent, presence of oxidizing agent and the effect of presence of other EAFD constituents such as sodium, potassium, calcium, silicon and sulfur. It was found that 100% recovery of both zinc and lead can be achieved for mixture containing 50% EAFD and 50% PVC when pyrolyzed under inert conditions, but contaminated with at least 20% of the iron chloride. However, when thermal treatment is performed in the presence of oxygen, the 100% zinc and lead recoveries were achieved at lower temperature with a minimal iron contamination (< 2.6%). Removal of sodium and potassium chloride from EAFD prior to pyrolysis by washing, under oxidizing condition, has also resulted in great selectivity in zinc and lead chlorination. The behavior of other elements during chlorination process was also discussed. The results obtained shall be instrumental in efforts aiming to achieve optimum recycling operations for both categories of pollutants.


EAFD PVC Pyrolysis Thermodynamic analysis Thermal treatment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13369_2017_2994_MOESM1_ESM.xlsx (29 kb)
Supplementary material 1 (xlsx 28 KB)
13369_2017_2994_MOESM2_ESM.docx (328 kb)
Supplementary material 2 (docx 327 KB)


  1. 1.
    Al-Harahsheh, M.; Aljarrah, M.; Rummanah, F.; Abdellateef, K.; Kingman, S.: Leaching of valuable metals from electric arc furnace dust—tetrabromobisphenol A pyrolysis residues. J. Anal. Appl. Pyrol. 125, 50–60 (2017)CrossRefGoogle Scholar
  2. 2.
    Al-Harahsheh, M.; Al-Otoom, A.; Al-Makhadmah, L.; Hamilton, I.E.; Kingman, S.; Al-Asheh, S.; Hararah, M.A.: Pyrolysis of poly(vinyl chloride) and–electric arc furnacedust mixtures. J. Hazard. Mater. 299, 425–436 (2015)CrossRefGoogle Scholar
  3. 3.
    Gomes, H.I.; Mayes, W.M.; Rogerson, M.; Stewart, D.I.; Burke, I.T.: Alkaline residues and the environment: a review of impacts, management practices and opportunities. J. Clean. Prod. 112, 3571–3582 (2016)CrossRefGoogle Scholar
  4. 4.
    Lin, X.; Peng, Z.; Yan, J.; Li, Z.; Hwang, J.-Y.; Zhang, Y.; Li, G.; Jiang, T.: Pyrometallurgical recycling of electric arc furnace dust. J. Clean. Prod. 149, 1079–1100 (2017)CrossRefGoogle Scholar
  5. 5.
    Nolasco-Sobrinho, P.J.; Espinosa, D.C.R.; Tenório, J.A.S.: Characterisation of dusts and sludges generated during stainless steel production in Brazilian industries. Ironmak. Steelmak. 30, 11–17 (2003)CrossRefGoogle Scholar
  6. 6.
    Santos, F.; Brocchi, E.; Araújo, V.; Souza, R.: Behavior of Zn and Fe content in electric arc furnace dust as submitted to chlorination methods. Metall. Mater. Trans. B 46, 1729–1741 (2015)CrossRefGoogle Scholar
  7. 7.
    Chairaksa-Fujimoto, R.; Maruyama, K.; Miki, T.; Nagasaka, T.: The selective alkaline leaching of zinc oxide from electric arc furnace dust pre-treated with calcium oxide. Hydrometallurgy 159, 120–125 (2016)CrossRefGoogle Scholar
  8. 8.
    Oustadakis, P.; Tsakiridis, P.E.; Katsiapi, A.; Agatzini-Leonardou, S.: Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: characterization and leaching by diluted sulphuric acid. J. Hazard. Mater. 179, 1–7 (2010)CrossRefGoogle Scholar
  9. 9.
    Dutra, A.J.B.; Paiva, P.R.P.; Tavares, L.M.: Alkaline leaching of zinc from electric arc furnace steel dust. Miner. Eng. 19, 478–485 (2006)CrossRefGoogle Scholar
  10. 10.
    Havlik, T.; Turzakova, M.; Stopic, S.; Friedrich, B.: Atmospheric leaching of EAF dust with diluted sulphuric acid. Hydrometallurgy 77, 41–50 (2005)CrossRefGoogle Scholar
  11. 11.
    Jarupisitthorn, C.; Pimtong, T.; Lothongkum, G.: Investigation of kinetics of zinc leaching from electric arc furnace dust by sodium hydroxide. Mater. Chem. Phys. 77, 531–535 (2003)CrossRefGoogle Scholar
  12. 12.
    Baik, D.S.; Fray, D.J.: Recovery of zinc from electric-arc furnace dust by leaching with aqueous hydrochloric acid, plating of zinc and regeneration of electrolyte. Miner. Process. Extr. Metall. 109, 121–128 (2000)CrossRefGoogle Scholar
  13. 13.
    Zhang, H.; Li, J.; Xu, A.; Yang, Q.; He, D.; Tian, N.: Carbothermic reduction of zinc and iron oxides in electric arc furnace dust. J. Iron. Steel Res. Int. 21, 427–432 (2014)CrossRefGoogle Scholar
  14. 14.
    Suetens, T.; Klaasen, B.; Van Acker, K.; Blanpain, B.: Comparison of electric arc furnace dust treatment technologies using exergy efficiency. J. Clean. Prod. 65, 152–167 (2014)CrossRefGoogle Scholar
  15. 15.
    Morcali, M.H.; Yucel, O.; Aydin, A.; Derin, B.: Carbothermic reduction of electric arc furnace dust and calcination of waelz oxide by semi-pilot scale rotary furnace. J. Min. Metall. 48, 173–184 (2012)CrossRefGoogle Scholar
  16. 16.
    Ruiz, O.; Clemente, C.; Alonso, M.; Alguacil, F.J.: Recycling of an electric arc furnace flue dust to obtain high grade ZnO. J. Hazard. Mater. 141, 33–36 (2007)CrossRefGoogle Scholar
  17. 17.
    Oda, H.; Ibaraki, T.; Abe, Y.: Dust recycling system by the rotary hearth furnace. In: Nippon Steel Technical Report, pp. 147–152 (2006)Google Scholar
  18. 18.
    Yoo, J.-M.; Kim, B.-S.; Lee, J.-C.; Kim, M.-S.; Nam, C.-W.: Kinetics of the volatilization removal of lead in electric arc furnace dust. Mater. Trans. JIM 46, 323–328 (2005)CrossRefGoogle Scholar
  19. 19.
    Liebman, M.: The current status of electric arc furnace dust recycling in North America. In: Proceedings of the TMS Fall Extraction and Processing Conference, pp. 237–250 (2000)CrossRefGoogle Scholar
  20. 20.
    Rütten, J.; Frias, C.; Diaz, G.; Martin, D.; Sanchez, F.: Processing EAF dust through Waelz Kiln and ZINCEXTM solvent extraction: the optimum solution. In: European Metallurgical Conference, SME, Düsseldorf/ Germany, pp. 1673–1688 (2011)Google Scholar
  21. 21.
    Sadat-Shojai, M.; Bakhshandeh, G.-R.: Recycling of PVC wastes. Polym. Degrad. Stab. 96, 404–415 (2011)CrossRefGoogle Scholar
  22. 22.
    Ahubelem, N.; Shah, K.; Moghtaderi, B.; Altarawneh, M.; Dlugogorski, B.Z.; Page, A.J.: Formation of chlorobenzenes by oxidative thermal decomposition of 1,3-dichloropropene. Combust. Flame 162, 2414–2421 (2015)CrossRefGoogle Scholar
  23. 23.
    Pi, H.; Xiong, Y.; Guo*, S.: The kinetic studies of elimination of HCL during thermal decomposition of PVC in the presence of transition metal oxides. Polym.-Plast. Technol. Eng. 44, 275–288 (2005)CrossRefGoogle Scholar
  24. 24.
    Tailoka, F.; Fray, D.J.: Use of PVC as a chlorinating agent in the recycling of metals. In: Mishra, B. (ed.) EPD Congress, pp. 475–493. TMS, Warrendale (1997)Google Scholar
  25. 25.
    Masuda, Y.; Uda, T.; Terakado, O.; Hirasawa, M.: Pyrolysis study of poly(vinyl chloride)-metal oxide mixtures: quantitative product analysis and the chlorine fixing ability of metal oxides. J. Anal. Appl. Pyrol. 77, 159–168 (2006)CrossRefGoogle Scholar
  26. 26.
    Yanik, J.; Uddin, M.A.; Ikeuchi, K.; Sakata, Y.: The catalytic effect of Red Mud on the degradation of poly (vinyl chloride) containing polymer mixture into fuel oil. Polym. Degrad. Stab. 73, 335–346 (2001)CrossRefGoogle Scholar
  27. 27.
    Oh, S.C.; Kwon, W.T.; Kim, S.R.: Dehydrochlorination characteristics of waste PVC wires by thermal decomposition. J. Ind. Eng. Chem. 15, 438–441 (2009)CrossRefGoogle Scholar
  28. 28.
    Lee, G.S.; Song, Y.J.: Recycling EAF dust by heat treatment with PVC. Miner. Eng. 20, 739–746 (2007)CrossRefGoogle Scholar
  29. 29.
    Al-Harahsheh, M.; Kingman, S.; Al-Makhadmah, L.; Hamilton, I.E.: Microwave treatment of electric arc furnace dust with PVC: dielectric characterization and pyrolysis-leaching. J. Hazard. Mater. 274, 87–97 (2014)CrossRefGoogle Scholar
  30. 30.
    Pickles, C.A.: Thermodynamic analysis of the selective chlorination of electric arc furnace dust. J. Hazard. Mater. 166, 1030–1042 (2009)CrossRefGoogle Scholar
  31. 31.
    Pickles, C.A.: Thermodynamic analysis of the selective carbothermic reduction of electric arc furnace dust. J. Hazard. Mater. 150, 265–278 (2008)CrossRefGoogle Scholar
  32. 32.
    Wang, Q.; Graydon, J.W.; Kirk, D.W.: Thermodynamic calculation on chlorination treatment for EAF dust with FeCl2. Chongqing Daxue Xuebao, Ziran Kexueban 26, 73–77 (2003)Google Scholar
  33. 33.
    Matsuura, H.; Tsukihashi, F.: Chlorination and evaporation behaviors of PbO-PbCl2 system in Ar-Cl2-O2 atmosphere. ISIJ Int. 45, 1804–1812 (2005)CrossRefGoogle Scholar
  34. 34.
    Matsuura, H.; Hamano, T.; Tsukihashi, F.: Removal of Zn and Pb from Fe2O3-ZnFe2O4-ZnO-PbO mixture by selective chlorination and evaporation reactions. ISIJ Int. 46, 1113–1119 (2006)CrossRefGoogle Scholar
  35. 35.
    Ahubelem, N.; Altarawneh, M.; Dlugogorski, B.Z.: Unimolecular decomposition of C3Cl6: pathways for formation of cylic chlorinated compounds. Organohalogen Compd. 74, 640–643 (2012)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentJordan University of Science and TechnologyIrbidJordan

Personalised recommendations