Skip to main content
Log in

Effect of Al\(_{2}\mathrm{O}_{3}\) Nanoparticles on the Mechanical and Physical Properties of Epoxy Composite

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The effect of alumina nanoparticles and the dispersion homogeneity on the composite performance, in terms of mechanical and physical properties, has been studied extensively. The effect of alumina nanoparticles weight percentage (0.25–0.5–0.75–1 wt%) and particle size of 60 nm mixed with commercial epoxy resin (Kemapoxy 150) are used in this investigation. Bending, hardness, tension, erosion, water absorption, and TGA tests are studied. Experimental results indicate improvement in the mechanical behavior with 0.25 wt% particles for both bending strength and wear resistance by 7 and 67% relative to pure epoxy. Water absorption depends mainly on particle distribution, and TGA testing slightly increases with the increase in particles dosage. The tested samples were studied using environmental scanning electron microscopy. Good distribution and dispersion of nanoparticles in the epoxy matrix lead to reducing the mobility of the epoxy chains due to the formation of high immobile nano-layers around the alumina nanoparticles. Thus, creating hydrogen bonding between chains and particles. Consequently, increased constraints between particles/polymer chains and polymer chains themselves are found leading chains to bear extra forces. Fracture strength decreases due to nanoparticles agglomerations causing an increase in the space distance (free volume space) between epoxy chains. This study suggests possible applications of the tested coating due to improved mechanical and physical properties upon nanoparticles addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Galliano, F.; Landolt, D.: Effect of an inhibitive pigment zinc-aluminum-phosphate (ZAP) on the corrosion mechanism of steel in waterborne coatings. Prog. Org. Coat. 56, 199–206 (2006)

    Article  Google Scholar 

  2. Talo, A.; Forsen, O.; Ylasaari, S.: Corrosion protective polyaniline epoxy blend coating on mild steel. Synth. Met. 102(1–3), 1394–1395 (1999)

    Article  Google Scholar 

  3. Miskovic-Stankovic, V.B.; Stanic, M.R.; Drazic, D.M.: The study of corrosion stability of organic epoxy protective coatings on aluminium and modified aluminium surfaces. J. Braz. Chem. Soc. 16(1), 98–102 (2005)

    Article  Google Scholar 

  4. Yamini, S.; Young, R.J.: Stability of crack propagation in epoxy resins. Polymer 18(10), 1075–1080 (1977)

    Article  Google Scholar 

  5. Joseph Rathish, R.; Dorothy, R.; Joany, R.M.; Pandiarajan, M.; Rajendran, S.: Corrosion resistance of nanoparticle- incorporated nano coatings. Euro. Chem. Bull. 2(12), 965–970 (2013)

    Google Scholar 

  6. Islam, M.S.; Masoodi, R.; Rostami, H.: The effect of nanoparticles percentage on mechanical behavior of silica-epoxy nanocomposites. J. Nanosci. 2013(2013), 1–10 (2013)

    Article  Google Scholar 

  7. Pukanski, B.; Fekete, E.: Adhesion and surface modification. Advances in Polymer Science 139, 109–153 (1999)

    Article  Google Scholar 

  8. Russsel, W.B.; Saville, D.A.; Schowalter, W.R.: Colloidal dispersions. Fluid Mechan. 222, 692–695 (1991)

    Article  MATH  Google Scholar 

  9. Ngo, T.D.; Nguyen, Q.T.; Nguyen, T.P.; Tran, P.: Effect of nanoclay on thermomechanical properties of epoxy/glass fibre composites. Arab. J. Sci. Eng. 41(4), 1251–1261 (2016)

    Article  Google Scholar 

  10. Fu, S.Y.; Feng, X.Q.; Lauke, B.; Mai, Y.W.: Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. B Eng. 39(6), 933–961 (2008)

    Article  Google Scholar 

  11. Lam, K.; Lau, K.T.: The effect of high concentration and small size of nanodiamonds on the strength of interface and fracture properties in epoxy nanocomposite. Materials 9(7), 507 (2016)

    Google Scholar 

  12. Shi, G.; Zhang, M.Q.; Rong, M.Z.; Wetzel, B.; Friedrich, K.: Friction and wear of low nanometer Si3N4 filled epoxy composites. Wear 254(7–8), 784–796 (2003)

    Article  Google Scholar 

  13. Hartwig, A.; Sebald, M.; Putz, D.; Aberle, L.: Preparation, characterization and properties of nanocomposite based on epoxy resin. Macromol. Symp. 221, 127–136 (2005)

    Article  Google Scholar 

  14. Dietsche, F.; Thomann, Y.; Thomann, R.; Mulhaupt, R.: Translucent acrlyric nanocomposites containing anisotropic laminated nanoparticles derived from intercalated layered silicate. J. Appl. Polym. Sci. 75(3), 396–405 (2000)

    Article  Google Scholar 

  15. Huong, N.: Improvement of bearing strength of laminated composites by nanoclay and Z-pin reinforcement, Ph.D. Dissertation, University of New South Wales, Australia (2006)

  16. Becker, O.; Varley, R.; Simon, G.: Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins. Polymer 43(16), 4365–4373 (2002)

    Article  Google Scholar 

  17. Shi, X.; Nguyen, T.A.; Suo, Z.; Liu, Y.; Avci, R.: Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surf. Coat. Technol. 204(3), 237–245 (2009)

    Article  Google Scholar 

  18. Shao-Yun, F.; Feng, X.Q.; Lauke, B.; Mai, Y.W.: Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. B Eng. 39(6), 933–961 (2008)

  19. Wetzel, B.; Haupert, F.; Zhang, M.Q.: Epoxy nanocomposites with high mechanical and tribological performance. Compos. Sci. Technol. 63(14), 2055–2067 (2003)

    Article  Google Scholar 

  20. Ma, J.; Mo, M.S.; Du, X.S.; Rosso, P.; Friedrich, K.; Kuan, H.C.: Effect of inorganic nanoparticles on mechanical property, fracture toughness and toughening mechanism of two epoxy systems. Polymer 49(16), 3510–3523 (2008)

    Article  Google Scholar 

  21. Zheng, Y.; Zheng, Y.; Ning, R.: Effects of nanoparticles SiO2 on the performance of nanocomposites. Mater. Lett. 57(19), 2940–2944 (2003)

    Article  Google Scholar 

  22. Neitzel, I.; Mochalin, V.; Knoke, I.; Palmese, G.R.; Gogotsi, Y.: Mechanical properties of epoxy composites with high contents of nanodiamond. Compos. Sci. Technol. 71(5), 710–716 (2011)

    Article  Google Scholar 

  23. Bezy, N.A.; Fathima, A.L.: Effect of TiO2 nanoparticles on mechanical properties of epoxy-resin system. Int. J. Eng. Res. Gen. Sci. 3(5), 143–151 (2015)

    Google Scholar 

  24. Swain, S.; Sharma, R.A.; Bhattacharya, S.; Chaudhary, L.: Effects of nano-silica/nano-alumina on mechanical and physical properties of polyurethane composites and coatings. Trans. Electr. Electron. Mater. 14(1), 1–8 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghada Bassioni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousri, O.M., Abdellatif, M.H. & Bassioni, G. Effect of Al\(_{2}\mathrm{O}_{3}\) Nanoparticles on the Mechanical and Physical Properties of Epoxy Composite. Arab J Sci Eng 43, 1511–1517 (2018). https://doi.org/10.1007/s13369-017-2955-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2955-7

Keywords

Navigation