Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 5723–5731 | Cite as

Effect of Inclination Angle of Baffled Reactor at Up-Flow on Residence Time Distribution

  • Nadji BouakazEmail author
  • Zoubida Bendjama
  • Adh’ya-eddine Hamitouche
  • Abdeltif Amrane
  • Mohamed Trari
Research Article - Chemical Engineering


The effect of wave baffles inclination angle on the behavior of a packed bed operating under liquid up-flow was experimentally investigated. The system has been widely used in biotechnology due to the large surface area available for the microorganisms attachment. The results of different flow rates showed that the reactor “e” at \(\theta = 180^{\circ }\) behaves as a plug flow distorted by a constant axial dispersion. At low flow rates, the mean residence time (MRT) and variance residence time (VRT) are high. However, both parameters increase with increasing the height of the sand bed for all reactors “a”, “b”, “c”, “d” and “e” (i.e. \(\theta = 0^{\circ }, 15^{\circ }, 30^{\circ }, 45^{\circ }\) and \(180^{\circ }\)), respectively, and the flow patterns lie between plug flow and perfectly mixed. Other results of residence time distribution (RTD) obtained from all reactors showed that these reactors do not have segregations or dead volumes and the reactor “c” at \(\theta = 30^{\circ }\) presents a uniform dispersion, high N-tanks number and a low MRT compared with the reference reactor at flat baffles.


Residence time distribution Packed-bed hydrodynamics Up-flow Inclination Mixing patterns 

List of symbols


Tracer concentration \(\left( \hbox {kg/m}^{3}\right) \)


Axial dispersion coefficient \(\left( \hbox {m}^{2}/\hbox {s}\right) \)


Packed-bed length (cm)


Number of stirred tanks (dimensionless)

\({ Pe}\)

Peclet number (dimensionless)


Reynolds number (dimensionless)


Time (h)


Superficial velocity (m/s)







Liquid interstitial







Greek letters

\(\varepsilon \)

Bed porosity (dimensionless)

\(\theta \)

Inclination angle (degrees)

\(\rho \)

Liquid density \(\left( \hbox {kg/m}^{3}\right) \)

\(\mu \)

Liquid viscosity (Pa s)

\(t_{\mathrm{m}} \)

Mean residence time (h)

\(\sigma _{t}^{2} \)

Variance of residence time (\(\hbox {h}^{2}\))

\(\sigma _{\theta } ^{2} \)

Variance residence time (dimensionless)

\(\Delta t_i \)

Sampling times (min)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The investigations have been supported by the Laboratory of Industrial Processes Engineering Sciences (Algiers). The authors are thankful to Pr. F. Kaouah and A. Semssoum for their technical assistances.


  1. 1.
    Chander, A.; Kundu, A.; Bej, S.K.; Dalai, A.K.; Vohra, D.K.: Hydrodynamic characteristics of cocurrent upflow and downflow of gas and liquid in a fixed bed reactor. Fuel 80(8), 1043–1053 (2001)CrossRefGoogle Scholar
  2. 2.
    De Backer, L.; Baron, G.: Residence time distribution in a packed bed bioreactor containing porous glass particles: influence of the presence of immobilized cells. Chem. Technol. Biotechnol. 59(3), 297–302 (1994)CrossRefGoogle Scholar
  3. 3.
    Bayraktar, E.; Mehmetoglu, U.: Back mixing and liquid hold-up in a cocurrent up-flow packed bed bioreactor. Chem. Eng. Commun. 185(1), 125–140 (2001)CrossRefGoogle Scholar
  4. 4.
    Grobicki, A.; Stuckey, D.C.: Hydrodynamic characteristics of the anaerobic baffled reactor. Water Res. 26(3), 371–378 (1992)CrossRefGoogle Scholar
  5. 5.
    De Nardi, I.R.; Zaiat, M.; Foresti, E.: Influence of the tracer characteristics on hydrodynamic models of packed-bed bioreactors. Bioproc. Eng. 21(5), 469–476 (1999)CrossRefGoogle Scholar
  6. 6.
    Sheeja, R.Y.; Murugesan, T.: Mass transfer studies on the biodegradation of phenol in up-flow packed bed reactors. J. Hozard. Mater. 89(2–3), 287–301 (2002)CrossRefGoogle Scholar
  7. 7.
    Tony, J.; David, L.P.:: Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Water Res. 40(13), 2561–2571 (2006)CrossRefGoogle Scholar
  8. 8.
    Bouteldja, H.; Hamidipour, M.; Larachi, F.: Hydrodynamics of an inclined gas-liquid cocurrent up-flow packed bed. Chem. Eng. Sci. 102, 397–404 (2013)CrossRefGoogle Scholar
  9. 9.
    Ma, L.; Wu, C.; Xie, Q.; Zhu, G.: Study on hydrodynamic characteristics of the split-feed anaerobic baffled reactor. Bioinf. Biomed. Eng. 978, 4244–4713 (2010)Google Scholar
  10. 10.
    Saber, M.; Truong Huu, T.; Pham-Huu, C.; Edouard, D.: Residence time distribution, axial liquid dispersion and dynamic-static liquid mass transfer in trickle flow reactor containing \(\beta \)-SiC open-cell foams. Chem. Eng. J. 185–186, 294–299 (2012)CrossRefGoogle Scholar
  11. 11.
    Guedes de Carvalho, J.R.F.; Delgado, J.M.P.Q.: Lateral dispersion in liquid flow through packed beds at \(Pe_{{\rm m}}< 1400\). AIChE J. 46(5), 1089–1095 (2000)CrossRefGoogle Scholar
  12. 12.
    Levenspiel, O.; Smith, W.K.: Notes on the diffusion-type model for the longitudinal mixing of fluids in flow. Chem. Eng. Sci. 50(24), 3891–3886 (1995)CrossRefGoogle Scholar
  13. 13.
    Chung, S.F.; Wen, C.Y.: Longitudinal dispersion of liquid flowing through fixed and fluidized beds. AIChE J. 14(6), 857–866 (1968)CrossRefGoogle Scholar
  14. 14.
    Fand, R.; Thinakaran, R.: The influence of the wall on flow through pipes packed bed with speres. J. Fluids Eng. 112, 84–88 (1990)CrossRefGoogle Scholar
  15. 15.
    Mark, J.A.Y.; Beran, M.J.: Dispersion of soluble matter in flow through granular media. J. Chem. Phys. 27(1), 270–274 (1954)MathSciNetGoogle Scholar
  16. 16.
    Njeng, A.S.B.; Vitu, S.; Clausse, M.; Dirion, J.-L.; Debacq, M.: Effect of lifter shape and operating parameters on the flow of materials in a pilot rotary kiln: part I. Experimental RTD and axial dispersion study. Powder Technol. 269, 554–565 (2015)CrossRefGoogle Scholar
  17. 17.
    Gupta, R.; Bansal, A.: Axial dispersion in packed bed reactors involving viscoinelastic and viscoelastic non-Newtonian fluids. Bioproc. Biosyst. Eng. 36(8), 1011–1018 (2013)CrossRefGoogle Scholar
  18. 18.
    Villermaux, J.: Génie de la réaction chimique: conception et fonctionnement des réacteurs. Nancy (1993). ISBN: 2852067595Google Scholar
  19. 19.
    Levenspiel, O.: Chemical Reaction Engineering, 3rd edn. Wiley, New York (1999). ISBN: 0-471-25424-XGoogle Scholar
  20. 20.
    Bernardez, L.A.; De Andrade Lima, L.R.P.; Almeida, P.F.: The hydrodynamics of an upflow packed bed bioreactor at low Reynolds number. Braz. J. Petrol. Gas 2(3), 114–121 (2008)Google Scholar
  21. 21.
    Tomlinson, E.J.; Chambers, B.: The effect of longitudinal mixing on the settleability of activated sludge. Water Res. Center TR 122, 37–38 (1979)Google Scholar
  22. 22.
    Iliuta, T.; Larachi, F.; Déry, M.; Baillargeon, S.: Liquid residence time distribution in a two-compartment wastewater treatment bioreactor. Can. J. Chem. Eng. 93, 599–612 (2015)CrossRefGoogle Scholar
  23. 23.
    Alkhaddar, R.M.; Higgins, P.R.; Phipps, D.A.; Andoh, R.Y.G.: Residence time distribution of a model hydrodynamic vortex separator. Ubran Water 3(1–2), 17–24 (2001)Google Scholar
  24. 24.
    Pant, H.J.; Sharma, V.K.; Shenoy, K.T.; Sreenivas, T.: Measurements of liquid phase residence time distribution in a pilot-scale continuous leaching reactor using radiotracer technique. Appl. Radt. Isot. 97, 40–46 (2015)CrossRefGoogle Scholar
  25. 25.
    Behin, J.; Shojaeimehr, T.: Influence of high density particles in residence of axial dispersion in liquid fluidized bed with residence time distribution cure studies. Korean J. Chem. Eng. 28(3), 980–986 (2011)CrossRefGoogle Scholar
  26. 26.
    Jimenez, B.; Noyola, A.; Capdeville, B.: Selected dyes for residence time distribution evaluation in bioreactors. Biotechnol. Tech. 2(2), 77–82 (1988)CrossRefGoogle Scholar
  27. 27.
    Jackson, D.Y.K.; Harmon, T.C.: Dispersion and diffusion in porous media under supercritical conditions. Chem. Eng. Sci. 54(3), 357–367 (1999)CrossRefGoogle Scholar
  28. 28.
    Lewandowski, Z.; Stoodley, P.: Flow induced vibrations, drag force, and pressure drop in conduits covered with biofilm. Water Sci. Technol. 32(8), 19–26 (1995)CrossRefGoogle Scholar
  29. 29.
    Yang, X.L.; Euzen, J.P.; Wild, G.: Residence time distribution of the liquid in gas–liquid cocurrent up-flow fixed-bed reactors with porous particles. Chem. Eng. Sci. 45(11), 3311–3317 (1990)CrossRefGoogle Scholar
  30. 30.
    Iliuta, I.; Thyrion, F.C.; Muntean, O.: Axial dispersion of liquid in gas–liquid cocurrent downflow and upflow fixed-bed reactors with porous particles. Chem. Eng. Res. Des. 76(1), 64–72 (1998)CrossRefGoogle Scholar
  31. 31.
    Liu, X.L.; Ren, N.Q.; Wan, C.L.: Hydrodynamic characteristics of a four-compartment periodic anaerobic baffled reactor. J. Environ. Sci. 19(10), 1159–1165 (2007)CrossRefGoogle Scholar
  32. 32.
    Liu, M.: Age distribution and the degree of mixing in continuous flow stirred tank reactors. Chem. Eng. Sci. 69(1), 382–393 (2012)CrossRefGoogle Scholar
  33. 33.
    Al-Dahhan, M.H.; Larachi, F.; Dudukovic, M.P.; Laurent, A.: High-pressure trickle-bed reactors: a review. Ind. Eng. Chem. Res. 36, 3292–3314 (1997)CrossRefGoogle Scholar
  34. 34.
    Pešić, R.; Kaluđerović Radoičić, T.; Bošković-Vragolović, N.; Grbavčić, Ž.: Pressure drop in packed beds of spherical particles at ambient and elevated air temperatures. Chem. Ind. Chem. Eng. Q. 21(3), 419–427 (2015)CrossRefGoogle Scholar
  35. 35.
    Swaine, D.E.; Daugul, A.J.: Review of liquid mixing in packed bed biological reactors. Biotechnol. Prog. 4(3), 134–148 (1988)CrossRefGoogle Scholar
  36. 36.
    Kuscu, Ö.S.; Sponza, D.T.: Effects of nitrobenzene concentration and hydraulic retention time on the treatment of nitrobenzene in sequential anaerobic baffled reactor (ABR)/continuously stirred tank reactor (CSTR) system. Bioresour. Technol. 100(7), 2162–2170 (2009)CrossRefGoogle Scholar
  37. 37.
    Punčochár, M.; Drahoš, J.: Limits to applicability of capillary model for pressure drop correlation. Chem. Eng. Sci. 55, 3951–3954 (2000)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2017

Authors and Affiliations

  • Nadji Bouakaz
    • 1
    Email author
  • Zoubida Bendjama
    • 1
  • Adh’ya-eddine Hamitouche
    • 2
  • Abdeltif Amrane
    • 3
  • Mohamed Trari
    • 1
  1. 1.Laboratory of Industrial Processes Engineering Sciences, Faculty of Mechanical and Engineering ProcessesUSTHBAlgiersAlgeria
  2. 2.Centre of Scientific and Technical Research Analyses Physical-ChemicalCRAPCAlgiersAlgeria
  3. 3.Ecole Nationale Supérieure de Chimie de RennesUniversité de Rennes 1, CNRS, UMR 6226Rennes Cedex 7France

Personalised recommendations