Skip to main content
Log in

Effect of Inclination Angle of Baffled Reactor at Up-Flow on Residence Time Distribution

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The effect of wave baffles inclination angle on the behavior of a packed bed operating under liquid up-flow was experimentally investigated. The system has been widely used in biotechnology due to the large surface area available for the microorganisms attachment. The results of different flow rates showed that the reactor “e” at \(\theta = 180^{\circ }\) behaves as a plug flow distorted by a constant axial dispersion. At low flow rates, the mean residence time (MRT) and variance residence time (VRT) are high. However, both parameters increase with increasing the height of the sand bed for all reactors “a”, “b”, “c”, “d” and “e” (i.e. \(\theta = 0^{\circ }, 15^{\circ }, 30^{\circ }, 45^{\circ }\) and \(180^{\circ }\)), respectively, and the flow patterns lie between plug flow and perfectly mixed. Other results of residence time distribution (RTD) obtained from all reactors showed that these reactors do not have segregations or dead volumes and the reactor “c” at \(\theta = 30^{\circ }\) presents a uniform dispersion, high N-tanks number and a low MRT compared with the reference reactor at flat baffles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

C :

Tracer concentration \(\left( \hbox {kg/m}^{3}\right) \)

D :

Axial dispersion coefficient \(\left( \hbox {m}^{2}/\hbox {s}\right) \)

L :

Packed-bed length (cm)

N :

Number of stirred tanks (dimensionless)

\({ Pe}\) :

Peclet number (dimensionless)

Re :

Reynolds number (dimensionless)

t :

Time (h)

u :

Superficial velocity (m/s)

H :

Height

L :

Liquid

Li:

Liquid interstitial

p :

Particle

i :

Seriatim

t :

Time

\(\varepsilon \) :

Bed porosity (dimensionless)

\(\theta \) :

Inclination angle (degrees)

\(\rho \) :

Liquid density \(\left( \hbox {kg/m}^{3}\right) \)

\(\mu \) :

Liquid viscosity (Pa s)

\(t_{\mathrm{m}} \) :

Mean residence time (h)

\(\sigma _{t}^{2} \) :

Variance of residence time (\(\hbox {h}^{2}\))

\(\sigma _{\theta } ^{2} \) :

Variance residence time (dimensionless)

\(\Delta t_i \) :

Sampling times (min)

References

  1. Chander, A.; Kundu, A.; Bej, S.K.; Dalai, A.K.; Vohra, D.K.: Hydrodynamic characteristics of cocurrent upflow and downflow of gas and liquid in a fixed bed reactor. Fuel 80(8), 1043–1053 (2001)

    Article  Google Scholar 

  2. De Backer, L.; Baron, G.: Residence time distribution in a packed bed bioreactor containing porous glass particles: influence of the presence of immobilized cells. Chem. Technol. Biotechnol. 59(3), 297–302 (1994)

    Article  Google Scholar 

  3. Bayraktar, E.; Mehmetoglu, U.: Back mixing and liquid hold-up in a cocurrent up-flow packed bed bioreactor. Chem. Eng. Commun. 185(1), 125–140 (2001)

    Article  Google Scholar 

  4. Grobicki, A.; Stuckey, D.C.: Hydrodynamic characteristics of the anaerobic baffled reactor. Water Res. 26(3), 371–378 (1992)

    Article  Google Scholar 

  5. De Nardi, I.R.; Zaiat, M.; Foresti, E.: Influence of the tracer characteristics on hydrodynamic models of packed-bed bioreactors. Bioproc. Eng. 21(5), 469–476 (1999)

    Article  Google Scholar 

  6. Sheeja, R.Y.; Murugesan, T.: Mass transfer studies on the biodegradation of phenol in up-flow packed bed reactors. J. Hozard. Mater. 89(2–3), 287–301 (2002)

    Article  Google Scholar 

  7. Tony, J.; David, L.P.:: Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Water Res. 40(13), 2561–2571 (2006)

    Article  Google Scholar 

  8. Bouteldja, H.; Hamidipour, M.; Larachi, F.: Hydrodynamics of an inclined gas-liquid cocurrent up-flow packed bed. Chem. Eng. Sci. 102, 397–404 (2013)

    Article  Google Scholar 

  9. Ma, L.; Wu, C.; Xie, Q.; Zhu, G.: Study on hydrodynamic characteristics of the split-feed anaerobic baffled reactor. Bioinf. Biomed. Eng. 978, 4244–4713 (2010)

    Google Scholar 

  10. Saber, M.; Truong Huu, T.; Pham-Huu, C.; Edouard, D.: Residence time distribution, axial liquid dispersion and dynamic-static liquid mass transfer in trickle flow reactor containing \(\beta \)-SiC open-cell foams. Chem. Eng. J. 185–186, 294–299 (2012)

    Article  Google Scholar 

  11. Guedes de Carvalho, J.R.F.; Delgado, J.M.P.Q.: Lateral dispersion in liquid flow through packed beds at \(Pe_{{\rm m}}< 1400\). AIChE J. 46(5), 1089–1095 (2000)

    Article  Google Scholar 

  12. Levenspiel, O.; Smith, W.K.: Notes on the diffusion-type model for the longitudinal mixing of fluids in flow. Chem. Eng. Sci. 50(24), 3891–3886 (1995)

    Article  Google Scholar 

  13. Chung, S.F.; Wen, C.Y.: Longitudinal dispersion of liquid flowing through fixed and fluidized beds. AIChE J. 14(6), 857–866 (1968)

    Article  Google Scholar 

  14. Fand, R.; Thinakaran, R.: The influence of the wall on flow through pipes packed bed with speres. J. Fluids Eng. 112, 84–88 (1990)

    Article  Google Scholar 

  15. Mark, J.A.Y.; Beran, M.J.: Dispersion of soluble matter in flow through granular media. J. Chem. Phys. 27(1), 270–274 (1954)

    MathSciNet  Google Scholar 

  16. Njeng, A.S.B.; Vitu, S.; Clausse, M.; Dirion, J.-L.; Debacq, M.: Effect of lifter shape and operating parameters on the flow of materials in a pilot rotary kiln: part I. Experimental RTD and axial dispersion study. Powder Technol. 269, 554–565 (2015)

    Article  Google Scholar 

  17. Gupta, R.; Bansal, A.: Axial dispersion in packed bed reactors involving viscoinelastic and viscoelastic non-Newtonian fluids. Bioproc. Biosyst. Eng. 36(8), 1011–1018 (2013)

    Article  Google Scholar 

  18. Villermaux, J.: Génie de la réaction chimique: conception et fonctionnement des réacteurs. Nancy (1993). ISBN: 2852067595

  19. Levenspiel, O.: Chemical Reaction Engineering, 3rd edn. Wiley, New York (1999). ISBN: 0-471-25424-X

    Google Scholar 

  20. Bernardez, L.A.; De Andrade Lima, L.R.P.; Almeida, P.F.: The hydrodynamics of an upflow packed bed bioreactor at low Reynolds number. Braz. J. Petrol. Gas 2(3), 114–121 (2008)

    Google Scholar 

  21. Tomlinson, E.J.; Chambers, B.: The effect of longitudinal mixing on the settleability of activated sludge. Water Res. Center TR 122, 37–38 (1979)

    Google Scholar 

  22. Iliuta, T.; Larachi, F.; Déry, M.; Baillargeon, S.: Liquid residence time distribution in a two-compartment wastewater treatment bioreactor. Can. J. Chem. Eng. 93, 599–612 (2015)

    Article  Google Scholar 

  23. Alkhaddar, R.M.; Higgins, P.R.; Phipps, D.A.; Andoh, R.Y.G.: Residence time distribution of a model hydrodynamic vortex separator. Ubran Water 3(1–2), 17–24 (2001)

    Google Scholar 

  24. Pant, H.J.; Sharma, V.K.; Shenoy, K.T.; Sreenivas, T.: Measurements of liquid phase residence time distribution in a pilot-scale continuous leaching reactor using radiotracer technique. Appl. Radt. Isot. 97, 40–46 (2015)

    Article  Google Scholar 

  25. Behin, J.; Shojaeimehr, T.: Influence of high density particles in residence of axial dispersion in liquid fluidized bed with residence time distribution cure studies. Korean J. Chem. Eng. 28(3), 980–986 (2011)

    Article  Google Scholar 

  26. Jimenez, B.; Noyola, A.; Capdeville, B.: Selected dyes for residence time distribution evaluation in bioreactors. Biotechnol. Tech. 2(2), 77–82 (1988)

    Article  Google Scholar 

  27. Jackson, D.Y.K.; Harmon, T.C.: Dispersion and diffusion in porous media under supercritical conditions. Chem. Eng. Sci. 54(3), 357–367 (1999)

    Article  Google Scholar 

  28. Lewandowski, Z.; Stoodley, P.: Flow induced vibrations, drag force, and pressure drop in conduits covered with biofilm. Water Sci. Technol. 32(8), 19–26 (1995)

    Article  Google Scholar 

  29. Yang, X.L.; Euzen, J.P.; Wild, G.: Residence time distribution of the liquid in gas–liquid cocurrent up-flow fixed-bed reactors with porous particles. Chem. Eng. Sci. 45(11), 3311–3317 (1990)

    Article  Google Scholar 

  30. Iliuta, I.; Thyrion, F.C.; Muntean, O.: Axial dispersion of liquid in gas–liquid cocurrent downflow and upflow fixed-bed reactors with porous particles. Chem. Eng. Res. Des. 76(1), 64–72 (1998)

    Article  Google Scholar 

  31. Liu, X.L.; Ren, N.Q.; Wan, C.L.: Hydrodynamic characteristics of a four-compartment periodic anaerobic baffled reactor. J. Environ. Sci. 19(10), 1159–1165 (2007)

    Article  Google Scholar 

  32. Liu, M.: Age distribution and the degree of mixing in continuous flow stirred tank reactors. Chem. Eng. Sci. 69(1), 382–393 (2012)

    Article  Google Scholar 

  33. Al-Dahhan, M.H.; Larachi, F.; Dudukovic, M.P.; Laurent, A.: High-pressure trickle-bed reactors: a review. Ind. Eng. Chem. Res. 36, 3292–3314 (1997)

    Article  Google Scholar 

  34. Pešić, R.; Kaluđerović Radoičić, T.; Bošković-Vragolović, N.; Grbavčić, Ž.: Pressure drop in packed beds of spherical particles at ambient and elevated air temperatures. Chem. Ind. Chem. Eng. Q. 21(3), 419–427 (2015)

    Article  Google Scholar 

  35. Swaine, D.E.; Daugul, A.J.: Review of liquid mixing in packed bed biological reactors. Biotechnol. Prog. 4(3), 134–148 (1988)

    Article  Google Scholar 

  36. Kuscu, Ö.S.; Sponza, D.T.: Effects of nitrobenzene concentration and hydraulic retention time on the treatment of nitrobenzene in sequential anaerobic baffled reactor (ABR)/continuously stirred tank reactor (CSTR) system. Bioresour. Technol. 100(7), 2162–2170 (2009)

    Article  Google Scholar 

  37. Punčochár, M.; Drahoš, J.: Limits to applicability of capillary model for pressure drop correlation. Chem. Eng. Sci. 55, 3951–3954 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The investigations have been supported by the Laboratory of Industrial Processes Engineering Sciences (Algiers). The authors are thankful to Pr. F. Kaouah and A. Semssoum for their technical assistances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadji Bouakaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouakaz, N., Bendjama, Z., Hamitouche, Ae. et al. Effect of Inclination Angle of Baffled Reactor at Up-Flow on Residence Time Distribution. Arab J Sci Eng 43, 5723–5731 (2018). https://doi.org/10.1007/s13369-017-2935-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2935-y

Keywords

Navigation