Skip to main content
Log in

Removal of Copper and Lead using Banana Biochar in Batch Adsorption Systems: Isotherms and Kinetic Studies

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study involved investigating the adsorption potential of biochar prepared from banana peel for the removal of copper (\(\hbox {Cu}^{2+})\) and lead (\(\hbox {Pb}^{2+})\). Process parameters for batch adsorption including contact time, pH, adsorbent dose, and initial metal concentrations were optimized. The time at which the equilibrium adsorption was attained was recoded as 30 min with a higher removal efficiency of \(\hbox {Pb}^{2+}\) when compared to \(\hbox {Cu}^{2+}\). Optimum removal was observed at a pH of approximately 5.5 and 9 for \(\hbox {Cu}^{2+}\) and \(\hbox {Pb}^{2+}\), respectively. A linear increase in metal removal efficiency was achieved with increases in the adsorbent dose from 0.2 to 1.4 g. The latter was estimated as the optimum adsorbent dose. A 50–70% decrease in removal efficiency was observed when the initial \(\hbox {Cu}^{2+}\) and \(\hbox {Pb}^{2+}\) concentrations were increased from 50 to 300 mg \(\hbox {L}^{-1}\) and from 200 to 1000 mg \(\hbox {L}^{-1}\), respectively. Among the isotherm models, the Freundlich model agreed best with the experimental data for \(\hbox {Pb}^{2+}\) while the Langmuir model exhibited a better ability to describe the adsorption of \(\hbox {Cu}^{2+}\) with each model providing the highest respective coefficient of determination. A pseudo-second-order kinetic model better described the kinetic behavior of both metal ions on the investigated adsorbent, namely banana biochar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajmal, M.; Ali Khan Rao, R.; Anwar, S.; Ahmad, J.; Ahmad, R.: Adsorption studies on rice husk: removal and recovery of Cd(II) from wastewater. Bioresour. Technol. 86, 147–149 (2003). https://doi.org/10.1016/S0960-8524(02)00159-1

    Article  Google Scholar 

  2. Mahugo-Santana, C.; Sosa-Ferrera, Z.; Torres-Padrón, M.E.; Santana-Rodríguez, J.J.: Application of new approaches to liquid-phase microextraction for the determination of emerging pollutants. TrAC, Trends Anal. Chem. 30, 731–748 (2011). https://doi.org/10.1016/j.trac.2011.01.011

    Article  Google Scholar 

  3. Amuda, O.S.; Giwa, A.A.; Bello, I.A.: Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem. Eng. J. 36, 174–181 (2007). https://doi.org/10.1016/j.bej.2007.02.013

    Article  Google Scholar 

  4. Singh, R.; Gautam, N.; Mishra, A.; Gupta, R.: Heavy metals and living systems: An overview. Indian J. Pharmacol. 43, 246–253 (2011). https://doi.org/10.4103/0253-7613.81505

    Article  Google Scholar 

  5. Amin, M.T.; Alazba, A.A.; Shafiq, M.: Adsorption of copper (\(\text{ Cu }^{2+})\) from aqueous solution using date palm trunk fibre: isotherms and kinetics. Desalination Water Treat. 57, 22454–22466 (2016). https://doi.org/10.1080/19443994.2015.1131635

    Article  Google Scholar 

  6. Jarup, L.: Hazards of heavy metal contamination. Br. Med. Bull. 68, 167–182 (2003). https://doi.org/10.1093/bmb/ldg032

    Article  Google Scholar 

  7. Sridhara Chary, N.; Kamala, C.T.; Samuel Suman Raj, D.: Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf. 69, 513–524 (2008). https://doi.org/10.1016/j.ecoenv.2007.04.013

    Article  Google Scholar 

  8. Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J.: Heavy Metals Toxicity and the Environment. EXS. 101, 133–164 (2012). https://doi.org/10.1007/978-3-7643-8340-4_6

    Google Scholar 

  9. Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N.: Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7, 60–72 (2014). https://doi.org/10.2478/intox-2014-0009

    Article  Google Scholar 

  10. Kumar, M.; Gogoi, A.; Kumari, D.; Borah, R.; Das, P.; Mazumder, P.; Tyagi, V.K.: Review of perspective, problems, challenges, and future scenario of metal contamination in the urban environment. J. Hazard. Toxic Radioact. Waste 21, 04017007 (2017)

    Article  Google Scholar 

  11. Hegazi, H.A.: Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC J. 9, 276–282 (2013). https://doi.org/10.1016/j.hbrcj.2013.08.004

    Article  Google Scholar 

  12. Wan Ngah, W.S.; Hanafiah, M.A.K.M.: Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour. Technol. 99, 3935–3948 (2008). https://doi.org/10.1016/j.biortech.2007.06.011

    Article  Google Scholar 

  13. Ahmad, T.; Danish, M.; Rafatullah, M.; Ghazali, A.; Sulaiman, O.; Hashim, R.; Ibrahim, M.N.M.: The use of date palm as a potential adsorbent for wastewater treatment: a review. Environ. Sci. Pollut. Res. 19, 1464–1484 (2011). https://doi.org/10.1007/s11356-011-0709-8

    Article  Google Scholar 

  14. Ahmaruzzaman, M.; Gupta, V.K.: Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind. Eng. Chem. Res. 50, 13589–13613 (2011). https://doi.org/10.1021/ie201477c

    Article  Google Scholar 

  15. Guo, Y.; Zhu, W.; Li, G.; Wang, X.; Zhu, L.: Effect of alkali treatment of wheat straw on adsorption of Cu(II) under acidic condition. J. Chem. 2016, e6326372 (2016). https://doi.org/10.1155/2016/6326372

    Article  Google Scholar 

  16. Li, W.; Zhang, L.; Peng, J.; Li, N.; Zhang, S.; Guo, S.: Tobacco stems as a low cost adsorbent for the removal of Pb(II) from wastewater: equilibrium and kinetic studies. Ind. Crops Prod. 28, 294–302 (2008). https://doi.org/10.1016/j.indcrop.2008.03.007

    Article  Google Scholar 

  17. Rajput, M.S.; Sharma, A.; Sharma, S.; Verma, S.: Removal of lead (II) from aqueous solutions by orange peel. Int. J. Appl. Res. 1, 411–413 (2015)

    Google Scholar 

  18. Patra, J.M.; Panda, S.S.; Dhal, N.K.: Biochar as a low-cost adsorbent for heavy metal removal: a review. Int. J. Res. Biosci. 6, 1–7 (2017)

    Google Scholar 

  19. Tang, J.; Zhu, W.; Kookana, R.; Katayama, A.: Characteristics of biochar and its application in remediation of contaminated soil. J. Biosci. Bioeng. 116, 653–659 (2013). https://doi.org/10.1016/j.jbiosc.2013.05.035

    Article  Google Scholar 

  20. Inyang, M.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.R.; Pullammanappallil, P.; Cao, X.: Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour. Technol. 110, 50–56 (2012). https://doi.org/10.1016/j.biortech.2012.01.072

    Article  Google Scholar 

  21. Inyang, M.I.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Ok, Y.S.; Cao, X.: A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit. Rev. Environ. Sci. Technol. 46, 406–433 (2016). https://doi.org/10.1080/10643389.2015.1096880

    Article  Google Scholar 

  22. Liu, H.Q.; Xu, X.; Wu, Z.H.; Wei, G.X.; Sun, L.: Removal of heavy metals from aqueous solution using biochar derived from biomass and sewage sludge. Appl. Mech. Mater. 768, 89–95 (2015). https://doi.org/10.4028/www.scientific.net/AMM.768.89

    Article  Google Scholar 

  23. Mary, G.S.; Sugumaran, P.; Niveditha, S.; Ramalakshmi, B.; Ravichandran, P.; Seshadri, S.: Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. Int. J. Recycl. Org. Waste Agric. 5, 43–53 (2016). https://doi.org/10.1007/s40093-016-0116-8

    Article  Google Scholar 

  24. Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U.: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-a critical review. Bioresour. Technol. 160, 191–202 (2014). https://doi.org/10.1016/j.biortech.2014.01.120

    Article  Google Scholar 

  25. Niazi, N.K.; Murtaza, B.; Bibi, I.; Shahid, M.; White, J.C.; Nawaz, M.F.; Bashir, S.; Shakoor, M.B.; Choppala, G.; Murtaza, G.; Wang, H.: Chapter 7: removal and recovery of metals by biosorbents and biochars derived from Biowastes. In: Environmental Materials and Waste. pp. 149–177. Academic Press (2016)

  26. Rajapaksha, A.U.; Chen, S.S.; Tsang, D.C.W.; Zhang, M.; Vithanage, M.; Mandal, S.; Gao, B.; Bolan, N.S.; Ok, Y.S.: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere 148, 276–291 (2016). https://doi.org/10.1016/j.chemosphere.2016.01.043

    Article  Google Scholar 

  27. Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z.: Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125, 70–85 (2015). https://doi.org/10.1016/j.chemosphere.2014.12.058

    Article  Google Scholar 

  28. Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S.: Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99, 19–33 (2014). https://doi.org/10.1016/j.chemosphere.2013.10.071

    Article  Google Scholar 

  29. DeMessie, B.; Sahle-Demessie, E.; Sorial, G.A.: Cleaning water contaminated with heavy metal ions using pyrolyzed biochar adsorbents. Sep. Sci. Technol. 50, 2448–2457 (2015). https://doi.org/10.1080/01496395.2015.1064134

    Article  Google Scholar 

  30. Tag, A.T.; Duman, G.; Ucar, S.; Yanik, J.: Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J. Anal. Appl. Pyrolysis. 120, 200–206 (2016). https://doi.org/10.1016/j.jaap.2016.05.006

    Article  Google Scholar 

  31. Karim, A.; Kumar, M.; Mohapatra, S.; Panda, C.; Singh, A.: Banana peduncle biochar: characteristics and adsorption of hexavalent chromium from aqueous solution. Int. Res. J. Pure Appl. Chem. 7, 1–10 (2015). https://doi.org/10.9734/IRJPAC/2015/16163

    Article  Google Scholar 

  32. Minello, M.C.S.; Paçó, A.L.; Martines, M.A.U.; Caetano, L.; Santos, A.D.; Padilha, P.M.; Castro, G.R.: Sediment grain size distribution and heavy metals determination in a dam on the Paraná River at Ilha Solteira, Brazil. J. Environ. Sci. Health. A 44, 861–865 (2009). https://doi.org/10.1080/10934520902958591

    Article  Google Scholar 

  33. Aslam, M.M.; Hasan, I.; Malik, M.; Matin, A.: Removal of copper from industrial effluent by adsorption with economically viable material. Electron. J. Environ. Agric. Food Chem. 3, 658–664 (2004)

    Google Scholar 

  34. László, K.; Bóta, A.; Nagy, L.G.: Comparative adsorption study on carbons from polymer precursors. Carbon 38, 1965–1976 (2000). https://doi.org/10.1016/S0008-6223(00)00038-5

    Article  Google Scholar 

  35. Yang, G.; Wang, Z.; Xian, Q.; Shen, F.; Sun, C.; Zhang, Y.; Wu, J.: Effects of pyrolysis temperature on the physicochemical properties of biochar derived from vermicompost and its potential use as an environmental amendment. RSC Adv. 5, 40117–40125 (2015). https://doi.org/10.1039/C5RA02836A

    Article  Google Scholar 

  36. Ho, Y.S.; Ng, J.C.Y.; McKay, G.: Kinetics of pollutant sorption by biosorbents: review. Sep. Purif. Methods 29, 189–232 (2000). https://doi.org/10.1081/SPM-100100009

    Article  Google Scholar 

  37. Krishnan, K.A.; Anirudhan, T.S.: Removal of cadmium(II) from aqueous solutions by steam-activated sulphurised carbon prepared from sugar-cane bagasse pith: kinetics and equilibrium studies. Water SA. 29, 147–156 (2003). https://doi.org/10.4314/wsa.v29i2.4849

    Article  Google Scholar 

  38. Qadeer, R.; Akhtar, S.: Kinetics study of lead ion adsorption on active carbon. Turk. J. Chem. 29, 95–100 (2005)

    Google Scholar 

  39. Areco, M.M.; dos Afonso, M.S.: Copper, zinc, cadmium and lead biosorption by Gymnogongrus torulosus. Thermodynamics and kinetics studies. Colloids Surf. B Biointerfaces. 81, 620–628 (2010). https://doi.org/10.1016/j.colsurfb.2010.08.014

    Article  Google Scholar 

  40. O’Connell, D.W.; Birkinshaw, C.; O’Dwyer, T.F.: Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour. Technol. 99, 6709–6724 (2008). https://doi.org/10.1016/j.biortech.2008.01.036

    Article  Google Scholar 

  41. Al-Ghouti, M.A.; Li, J.; Salamh, Y.; Al-Laqtah, N.; Walker, G.; Ahmad, M.N.M.: Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. J. Hazard. Mater. 176, 510–520 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.059

    Article  Google Scholar 

  42. Al-Ghouti, M.A.; Khraisheh, M.A.M.; Allen, S.J.; Ahmad, M.N.: The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J. Environ. Manage. 69, 229–238 (2003). https://doi.org/10.1016/j.jenvman.2003.09.005

    Article  Google Scholar 

  43. Chen, J.P.; Lin, M.: Equilibrium and kinetics of metal ion adsorption onto a commercial H-type granular activated carbon: experimental and modeling studies. Water Res. 35, 2385–2394 (2001). https://doi.org/10.1016/S0043-1354(00)00521-2

    Article  Google Scholar 

  44. Pehlivan, E.; Yanık, B.H.; Ahmetli, G.; Pehlivan, M.: Equilibrium isotherm studies for the uptake of cadmium and lead ions onto sugar beet pulp. Bioresour. Technol. 99, 3520–3527 (2008). https://doi.org/10.1016/j.biortech.2007.07.052

    Article  Google Scholar 

  45. Dronnet, V.M.; Renard, C.M.G.C.; Axelos, M.A.V.; Thibault, J.-F.: Binding of divalent metal cations by sugar-beet pulp. Carbohydr. Polym. 34, 73–82 (1997). https://doi.org/10.1016/S0144-8617(97)00055-6

    Article  Google Scholar 

  46. Ofomaja, A.E.; Ho, Y.-S.: Equilibrium sorption of anionic dye from aqueous solution by palm kernel fibre as sorbent. Dyes Pigm. 74, 60–66 (2007). https://doi.org/10.1016/j.dyepig.2006.01.014

    Article  Google Scholar 

  47. Uzunoğlu, D.; Gürel, N.; Özkaya, N.; Özer, A.: The single batch biosorption of copper(II) ions on Sargassum acinarum. Desalination Water Treat. 52, 1514–1523 (2014). https://doi.org/10.1080/19443994.2013.789403

    Article  Google Scholar 

  48. Huang, X.-Y.; Mao, X.-Y.; Bu, H.-T.; Yu, X.-Y.; Jiang, G.-B.; Zeng, M.-H.: Chemical modification of chitosan by tetraethylenepentamine and adsorption study for anionic dye removal. Carbohydr. Res. 346, 1232–1240 (2011). https://doi.org/10.1016/j.carres.2011.04.012

    Article  Google Scholar 

  49. Al-Homaidan, A.A.; Al-Houri, H.J.; Al-Hazzani, A.A.; Elgaaly, G.; Moubayed, N.M.S.: Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass. Arab. J. Chem. 7, 57–62 (2014). https://doi.org/10.1016/j.arabjc.2013.05.022

    Article  Google Scholar 

  50. Putra, W.P.; Kamari, A.; Yusoff, S.N.M.; Ishak, C.F.; Mohamed, A.; Hashim, N.; Isa, I.M.: Biosorption of Cu(II), Pb(II) and Zn(II) Ions from aqueous solutions using selected waste materials: adsorption and characterisation studies. J. Encapsulation Adsorpt. Sci. 04, 25 (2014). https://doi.org/10.4236/jeas.2014.41004

    Article  Google Scholar 

  51. Bhaumik, M.; Setshedi, K.; Maity, A.; Onyango, M.S.: Chromium(VI) removal from water using fixed bed column of polypyrrole/Fe3O4 nanocomposite. Sep. Purif. Technol. 110, 11–19 (2013). https://doi.org/10.1016/j.seppur.2013.02.037

    Article  Google Scholar 

  52. Malkoc, E.; Nuhoglu, Y.; Dundar, M.: Adsorption of chromium(VI) on pomace–an olive oil industry waste: batch and column studies. J. Hazard. Mater. 138, 142–151 (2006). https://doi.org/10.1016/j.jhazmat.2006.05.051

    Article  Google Scholar 

  53. Temkin, M.J.; Pyzhev, V.: Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochim URSS. 12, 217–222 (1940)

    Google Scholar 

  54. Kumar, P.S.; Ramakrishnan, K.; Gayathri, R.: Removal of Nickel(II) from aqueous solutions by ceralite IR 120 cationic exchange resins. J. Eng. Sci. Technol. 5, 232–243 (2010)

    Google Scholar 

  55. Tahir, H.; Hammed, U.; Sultan, M.; Jahanzeb, Q.: Batch adsorption technique for the removal of malachite green and fast green dyes by using montmorillonite clay as adsorbent. Afr. J. Biotechnol. 9, 8206–8214 (2010). https://doi.org/10.5897/AJB10.911

    Article  Google Scholar 

  56. Almeida, C.A.P.; Debacher, N.A.; Downs, A.J.; Cottet, L.; Mello, C.A.D.: Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J. Colloid Interface Sci. 332, 46–53 (2009). https://doi.org/10.1016/j.jcis.2008.12.012

    Article  Google Scholar 

  57. Dąbrowski, A.: Adsorption—from theory to practice. Adv. Colloid Interface Sci. 93, 135–224 (2001). https://doi.org/10.1016/S0001-8686(00)00082-8

    Article  Google Scholar 

  58. Günay, A.; Arslankaya, E.; Tosun, İ.: Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics. J. Hazard. Mater. 146, 362–371 (2007). https://doi.org/10.1016/j.jhazmat.2006.12.034

    Article  Google Scholar 

  59. Yadav, S.K.; Singh, D.K.; Sinha, S.: Adsorption study of lead(II) onto xanthated date palm trunk: kinetics, isotherm and mechanism. Desalination Water Treat. 51, 6798–6807 (2013). https://doi.org/10.1080/19443994.2013.792142

    Article  Google Scholar 

  60. Liang, S.; Guo, X.; Feng, N.; Tian, Q.: Effective removal of heavy metals from aqueous solutions by orange peel xanthate. Trans. Nonferrous Met. Soc. China 20, s187–s191 (2010). https://doi.org/10.1016/S1003-6326(10)60037-4

    Article  Google Scholar 

Download references

Acknowledgements

The project was financially supported by King Saud University, Vice Deanship of Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Amin.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, M.T., Alazba, A.A. & Shafiq, M. Removal of Copper and Lead using Banana Biochar in Batch Adsorption Systems: Isotherms and Kinetic Studies. Arab J Sci Eng 43, 5711–5722 (2018). https://doi.org/10.1007/s13369-017-2934-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2934-z

Keywords

Navigation