Skip to main content

Esterification Reaction Kinetics of Acetic and Oleic Acids with Ethanol in the Presence of Amberlyst 15

Abstract

Esterification of acetic and oleic acids with ethanol in the presence of Amberlyst 15 was evaluated as a function of reaction temperature, fatty acid-to-ethanol molar ratio, catalyst concentration, and fatty acid carbon chain length. All reactions were carried out using a batch reaction system, and the resulting experimental data was modeled using Langmuir–Hinshelwood–Hougen–Watson and Eley–Rideal surface reaction kinetic models to determine reaction rates. Esterification of acetic and oleic acid with ethanol increases with increasing reaction temperature, catalyst concentration, and fatty acid-to-alcohol molar ratio. Shorter carbon chain lengths also enhanced esterification. A maximum esterification of 67.1 and 41.6% was observed for acetic and oleic acid, respectively. Esterification of both fatty acids with ethanol in the presence of Amberlyst 15 was determined to be a surface reaction limited. The reaction rate constant (k) for acetic acid esterification was determined to be 4.31/min according to the ER model (\(R^2 \ge 0.94\)), while oleic acid esterification was determined to be 0.263/min (\(R^{2} \ge 0.79\)) based upon the LHHW model.

This is a preview of subscription content, access via your institution.

References

  1. Ding, X.; Yuan, X.; Leng, L.; Huang, H.; Wang, H.; Shao, J.; Jiang, L.; Chen, X.; Zeng, G.: Upgrading sewage sludge liquefaction bio-oil by microemulsification: the effect of ethanol as polar phase on solubilization performance and fuel properties. Energy Fuels 31(2), 1574–1582 (2017). https://doi.org/10.1021/acs.energyfuels.6b02269

    Article  Google Scholar 

  2. Marchetti, J.M.; Miguel, V.U.; Errazu, A.F.: Heterogeneous esterification of oil with high amount of free fatty acids. Fuel 86(5), 906–910 (2007). https://doi.org/10.1016/j.fuel.2006.09.006

    Article  Google Scholar 

  3. Atadashi, I.M.; Aroua, M.K.; Abdul Aziz, A.R.; Sulaiman, N.M.N.: Production of biodiesel using high free fatty acid feedstocks. Renew. Sustain. Energy Rev. 16(5), 3275–3285 (2012). https://doi.org/10.1016/j.rser.2012.02.063

    Article  Google Scholar 

  4. Lam, M.K.; Lee, K.T.; Mohamed, A.R.: Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol. Adv. 28(4), 500–518 (2010). https://doi.org/10.1016/j.biotechadv.2010.03.002

    Article  Google Scholar 

  5. Veljković, V.B.; Lakićević, S.H.; Stamenković, O.S.; Todorović, Z.B.; Lazić, M.L.: Biodiesel production from tobacco (Nicotiana tabacum L.) seed oil with a high content of free fatty acids. Fuel 85(17), 2671–2675 (2006). https://doi.org/10.1016/j.fuel.2006.04.015

    Article  Google Scholar 

  6. Chuah, L.F.; Bokhari, A.; Yusup, S.; Klemeš, J.J.; Abdullah, B.; Akbar, M.M.: Optimisation and kinetic studies of acid esterification of high free fatty acid rubber seed oil. Arab. J. Sci. Eng. 41(7), 2515–2526 (2016). https://doi.org/10.1007/s13369-015-2014-1

    Article  Google Scholar 

  7. Chakrabarti, M.H.; Ali, M.; Usmani, J.N.; Baroutian, S.; Saleem, M.: Technical evaluation of Pongame and Jatropha B20 fuels in Pakistan. Arab. J. Sci. Eng. 38(4), 759–766 (2013). https://doi.org/10.1007/s13369-012-0368-1

    Article  Google Scholar 

  8. Roschat, W.; Siritanon, T.; Yoosuk, B.; Sudyoadsuk, T.; Promarak, V.: Rubber seed oil as potential non-edible feedstock for biodiesel production using heterogeneous catalyst in Thailand. Renew. Energy 101, 937–944 (2017). https://doi.org/10.1016/j.renene.2016.09.057

    Article  Google Scholar 

  9. Atabani, A.E.; Badruddin, I.A.; Masjuki, H.H.; Chong, W.T.; Lee, K.T.: Pangium edule reinw: a promising non-edible oil feedstock for biodiesel production. Arab. J. Sci. Eng. 40(2), 583–594 (2015). https://doi.org/10.1007/s13369-014-1452-5

    Article  Google Scholar 

  10. Jamal, Y.; Luo, G.; Kuo, C.H.; Rabie, A.; Boulanger, B.O.: Sorption kinetics, thermodynamics and regeneration for lipid feedstock deacidification using a mixed-bed ion-exchange resin. J. Food Process Eng. 37(1), 27–36 (2014). https://doi.org/10.1111/jfpe.12056

    Article  Google Scholar 

  11. Hayyan, A.; Alam, M.Z.; Mirghani, M.E.S.; Kabbashi, N.A.; Hakimi, N.I.N.M.; Siran, Y.M.; Tahiruddin, S.: Sludge palm oil as a renewable raw material for biodiesel production by two-step processes. Bioresour. Technol. 101(20), 7804–7811 (2010). https://doi.org/10.1016/j.biortech.2010.05.045

    Article  Google Scholar 

  12. Giri, B.Y.; Rao, K.N.; Devi, B.L.A.P.; Lingaiah, N.; Suryanarayana, I.; Prasad, R.B.N.; Prasad, P.S.S.: Esterification of palmitic acid on the ammonium salt of 12-tungstophosphoric acid: the influence of partial proton exchange on the activity of the catalyst. Catal. Commun. 6(12), 788–792 (2005). https://doi.org/10.1016/j.catcom.2005.08.001

    Article  Google Scholar 

  13. Brahmkhatri, V.; Patel, A.: Supported heteropolyacids: sytnhesis, characterization and effect of supports on esterification reactions. Kinet. Catal. 51(3), 380–384 (2010). https://doi.org/10.1134/s0023158410030092

    Article  Google Scholar 

  14. Zhang, Q.; Wei, F.; Ma, P.; Zhang, Y.; Wei, F.; Chen, H.: Mesoporous Al-Mo oxides as an effective and stable catalyst for the synthesis of biodiesel from the esterification of free-fatty acids in non-edible oils. Waste Biomass Valoriz. (2017). https://doi.org/10.1007/s12649-017-9865-5

    Article  Google Scholar 

  15. Park, J.-Y.; Kim, D.-K.; Lee, J.-S.: Esterification of free fatty acids using water-tolerable Amberlyst as a heterogeneous catalyst. Bioresour. Technol. 101(1), S62–S65 (2010). https://doi.org/10.1016/j.biortech.2009.03.035

    Article  Google Scholar 

  16. Son, S.M.; Kimura, H.; Kusakabe, K.: Esterification of oleic acid in a three-phase, fixed-bed reactor packed with a cation exchange resin catalyst. Bioresour. Technol. 102(2), 2130–2132 (2011). https://doi.org/10.1016/j.biortech.2010.08.089

    Article  Google Scholar 

  17. Khan, J.A.; Jamal, Y.; Shahid, A.; Boulanger, B.O.N.: Esterification of acetic and oleic acids within the Amberlyst 15 packed catalytic column. Korean J. Chem. Eng. 33(2), 582–586 (2016). https://doi.org/10.1007/s11814-015-0192-x

    Article  Google Scholar 

  18. Jamal, Y.; Rabie, A.; Boulanger, B.O.: Determination of methanolysis rate constants for low and high fatty acid oils using heterogeneous surface reaction kinetic models. React. Kinet. Mech. Catal. 114(1), 63–74 (2015). https://doi.org/10.1007/s11144-014-0780-5

    Article  Google Scholar 

  19. Sharma, M.; Toor, A.P.; Wanchoo, R.: Kinetics of the esterification reaction between pentanoic acid and methanol catalyzed by noncorrosive cation exchange resin. Chem. Biochem. Eng. Q. 28(1), 79–85 (2014)

    Google Scholar 

  20. Ahmedzeki, N.S.; Alhassani, M.H.; Al-jandeel, H.A.: Heterogeneously catalyzed esterification reaction: experimental and modeling using Langmuir–Hinshelwood approach. IJCPE 14(4), 45–52 (2013)

    Google Scholar 

  21. Abbas, A.S.; Albayati, T.M.; Alismaeel, Z.T.; Doyle, A.M.: Kinetics and mass transfer study of oleic acid esterification over prepared nanoporous HY zeolite. IJCPE 17(1), 47–60 (2016)

    Google Scholar 

  22. Ngaosuwan, K.; Mo, X.; Goodwin, J.G.; Praserthdam, P.: Reaction kinetics and mechanisms for hydrolysis and transesterification of triglycerides on tungstated zirconia. Top. Catal. 53(11), 783–794 (2010). https://doi.org/10.1007/s11244-010-9464-1

    Article  Google Scholar 

  23. Sharma, M.; Wanchoo, R.K.; Toor, A.P.: Amberlyst 15 catalyzed esterification of nonanoic acid with 1-propanol: kinetics, modeling, and comparison of its reaction kinetics with lower alcohols. Ind. Eng. Chem. Res. 53(6), 2167–2174 (2014). https://doi.org/10.1021/ie402407r

    Article  Google Scholar 

  24. Ilgen, O.: Investigation of reaction parameters, kinetics and mechanism of oleic acid esterification with methanol by using Amberlyst 46 as a catalyst. Fuel Process. Technol. 124, 134–139 (2014). https://doi.org/10.1016/j.fuproc.2014.02.023

    Article  Google Scholar 

  25. American Oil Chemist Society (AOCS) Method Ca 5a-40. https://www.scribd.com/document/270517200/Ca-5a-40-FFA. Accessed 01 July 2017

  26. Jamal, Y.; Boulanger, B.O.: Separation of oleic acid from soybean oil using mixed-bed resins. J. Chem. Eng. Data 55(7), 2405–2409 (2010). https://doi.org/10.1021/je900829c

    Article  Google Scholar 

  27. JagadeeshBabu, P.E.; Sandesh, K.; Saidutta, M.B.: Kinetics of esterification of acetic acid with methanol in the presence of ion exchange resin catalysts. Ind. Eng. Chem. Res. 50(12), 7155–7160 (2011). https://doi.org/10.1021/ie101755r

    Article  Google Scholar 

  28. De Silva, E.C.L.; Bamunusingha, B.A.N.N.; Gunasekera, M.Y.: Heterogeneous kinetic study for esterification of acetic acid with ethanol. Engineer, J. of I.E.SL 47, 9–15 (2014). https://doi.org/10.4038/engineer.v47i1.6855

    Article  Google Scholar 

  29. Yaakob, A.Q.; Bhatia, S.: Esterification of palmitic acid with methanol in the presence of macroporous ion exchange resin as catalyst. IIUM Eng. J. 5(2), 35–51 (2004). http://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/2380

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousuf Jamal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 112 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahid, A., Jamal, Y., Khan, S.J. et al. Esterification Reaction Kinetics of Acetic and Oleic Acids with Ethanol in the Presence of Amberlyst 15. Arab J Sci Eng 43, 5701–5709 (2018). https://doi.org/10.1007/s13369-017-2927-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2927-y

Keywords

  • Heterogeneous esterification
  • Fatty acids
  • Amberlyst 15
  • Surface reaction
  • Reaction rate