Peltophorum pterocarpum Flower-Mediated Synthesis, Characterization, Antimicrobial and Cytotoxic Activities of ZnO Nanoparticles

  • Gunjan Khara
  • Hemali Padalia
  • Pooja Moteriya
  • Sumitra Chanda
Research Article - Biological Sciences
  • 16 Downloads

Abstract

In the present investigation, zinc oxide nanoparticles (ZnONPs) were synthesized using Peltophorum pterocarpum flower extract and evaluated its antimicrobial and cytotoxic activity. The synthesis of ZnONPs using plant extracts is becoming popular as it is eco-friendly, safe, simple and non-toxic method. Characterization was done by various spectral analyses. UV–visible spectrum showed maximum peak at 380 nm, and crystalline nature was of nanoparticles confirmed by XRD analysis. The average size of nanoparticles was 69.45 nm. The antimicrobial activity was evaluated by agar well diffusion method against pathogenic microorganisms. ZnONPs showed broad spectrum of antimicrobial activity against pathogenic microorganisms. Cytotoxic activity was evaluated by MTT assay against HeLa cancer cell lines. They showed 50% cell viability at \(10~\upmu \hbox {g}/\hbox {ml}\). The results suggested that synthesized ZnONPs have potential application in various field of medical for treatment of disease.

Keywords

Green synthesis Peltophorum pterocarpum Zinc oxide nanoparticles Antimicrobial activity Cytotoxic activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; Kim, Y.K.; Lee, Y.S.; Jeong, D.H.; Cho, M.Y.: Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3, 95–101 (2007)CrossRefGoogle Scholar
  2. 2.
    Egger, S.; Lehmann, R.P.; Height, M.J.; Loessner, M.J.; Schuppler, M.: Antimicrobial properties of a novel Silver–Silica nanocomposite material. Appl. Environ. Microbiol. 75, 2973–2976 (2009)CrossRefGoogle Scholar
  3. 3.
    Sakamoto, J.H.; Van de Ven, A.L.; Godin, B.; Blanco, E.; Serda, R.E.; Grattoni, A.; Ziemys, A.; Bouamrani, A.; Hu, T.; Ranganathan, S.I.; De Rosa, E.; Martinez, J.O.; Smid, C.A.; Buchanan, R.M.; Lee, S.Y.; Srinivasan, S.; Landry, M.; Meyn, A.; Tasciotti, E.; Liu, X.; Decuzzi, P.; Ferrari, M.: Enabling individualized therapy through nanotechnology. Pharmacol. Res. 62, 57–89 (2010)CrossRefGoogle Scholar
  4. 4.
    Singh, R.P.; Shukla, V.K.; Yadav, R.S.; Sharma, P.K.; Singh, P.K.; Pandey, A.C.: Biological approach of zinc oxide nanoparticles formation and its characterization. Adv. Mater. Lett. 2, 313–317 (2011)CrossRefGoogle Scholar
  5. 5.
    Anbukkarasi, V.; Srinivasan, R.; Elangovan, N.: Antimicrobial activity of green synthesized zinc oxide nanoparticles from Emblica officinalis. Int. J. Pharm. Sci. Rev. Res. 33, 110–115 (2015)Google Scholar
  6. 6.
    Kouvaris, P.; Delimitis, A.; Zaspalis, V.; Papadopoulos, D.; Tsipas, S.A.; Michailidis, N.: Green synthesis and characterization of silver nanoparticles produced using Arbutus unedo leaf extract. Mater. Lett. 76, 18–20 (2012)CrossRefGoogle Scholar
  7. 7.
    Sivakumar, P.; Devi, C.N.; Renganathan, S.: Synthesis of silver nanoparticles using Lantana camara fruit extract and its effect on pathogens. Asian J. Pharm. Clin. Res. 5, 97–101 (2012)Google Scholar
  8. 8.
    Chanda, S.: Silver nanoparticles (medicinal plants mediated): a new generation of antimicrobials to combat microbial pathogens—a review. In: Mendez-Vilas, A. (eds) Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education, FORMATEX (2013)Google Scholar
  9. 9.
    Wang, C.; Mathiyalagan, R.; Kim, Y.J.; Aceituno, V.C.; Singh, P.; Ahn, S.; Wang, D.; Yang, D.C.: Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities. Int. J. Nanomed. 11, 3691–3701 (2016)CrossRefGoogle Scholar
  10. 10.
    Brown, K.: Breast cancer chemoprevention: risk-benefit effects of the antioestrogen tamoxifen. Expert Opin. Drug. Saf. 1, 253–267 (2002)CrossRefGoogle Scholar
  11. 11.
    Wang, R.; Xin, J.H.; Tao, X.M.; Daoud, W.A.: ZnO nanorods grown on cotton fabrics at low temperature. Chem. Phys. Lett. 398, 250–255 (2004)CrossRefGoogle Scholar
  12. 12.
    Rasmussen, J.W.; Martinez, E.; Louka, P.; Wingett, D.G.: Zinc oxide nanoparticles for selective destruction of tumour cells and potential for drug delivery applications. Expert. Opin. Drug. Deliv. 7, 1063–1077 (2010)CrossRefGoogle Scholar
  13. 13.
    Atmaca, S.; Gul, K.; Cicek, R.: The effect of zinc on microbial growth. Turk. J. Med. Sci. 28, 595–597 (1998)Google Scholar
  14. 14.
    Sethuraman, M.G.; Sulochana, N.; Kameswaran, L.: Anti-inflammatory and antibacterial activity of Peltophorum pterocarpum flowers. Fitoterapia. 55, 177–179 (1984)Google Scholar
  15. 15.
    Sukumaran, S.; Kiruba, S.; Mahesh, M.; Nisha, S.R.; Miller, P.Z.; Ben, C.P.; Jeeva, S.: Phytochemical constituents and antibacterial efficacy of the flowers of Peltophorum pterocarpum (DC.) Baker ex Heyne. Asian Pac. J. Trop. Med. 4, 735–738 (2011)CrossRefGoogle Scholar
  16. 16.
    Perez, C.; Paul, M.; Bazerque, P.: An antibiotic assay by the agar well diffusion method. Acta Biol. Med. Exp. 15, 113–115 (1990)Google Scholar
  17. 17.
    Kaneria, M.; Baravalia, Y.; Vaghasiya, Y.; Chanda, S.: Determination of antibacterial and antioxidant potential of some medicinal plants from Saurashtra region, India. Indian J. Pharm. Sci. 71, 406–412 (2009)CrossRefGoogle Scholar
  18. 18.
    Rakholiya, K.; Chanda, S.: In vitro interaction of certain antimicrobial agents in combination with plant extracts against some pathogenic bacterial strains. Asian Pac. J. Trop. Biomed. 2, 876–880 (2012)CrossRefGoogle Scholar
  19. 19.
    Labieniec, M.; Gabryelak, T.: Effects of tannins on Chinese hamster cell line B14. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 539, 127–135 (2003)CrossRefGoogle Scholar
  20. 20.
    Kitture, R.; Chordiya, K.; Gaware, S.; Ghosh, S.; More, P.A.; Kulkarni, P.; Chopade, B.A.; Kale, S.N.: ZnO nanoparticles red sandalwood conjugate: a promising anti-diabetic agent. J. Nanosci. Nanotech. 15, 4046–4051 (2015)CrossRefGoogle Scholar
  21. 21.
    Akash, S.; Kumar, S.S.; Dhamodhar, P.: Inhibition of group a streptococcus by green synthesized zinc oxide nanoparticles. Int. J. Pharma Bio Sci. 6, 85–98 (2015)Google Scholar
  22. 22.
    Prabhu, Y.T.; Kumari, B.S.; Rao, K.V.; Kavitha, V.; Padmavathi, D.A.: Surfactant assisted synthesis of ZnO nanoparticles, characterization and its antimicrobial activity against Staphylococcus aureus and Escherichia coli. Int. J. Curr. Eng. Technol. 4, 1038–1041 (2014)Google Scholar
  23. 23.
    Vijayakumar, S.; Vinoj, G.; Malaikozhundan, B.; Shanthi, S.; Vaseeharan, B.: Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochim. Acta A Mol. Biomol. Spectrosc. 137, 886–891 (2015)CrossRefGoogle Scholar
  24. 24.
    Nagajyothi, P.C.; Sreekanth, T.V.M.; Tettey, C.O.; Jun, Y.I.; Mook, S.H.: Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis rhizoma. Bioorg. Med. Chem. Lett. 24, 4298–4303 (2014)CrossRefGoogle Scholar
  25. 25.
    Janaki, A.C.; Sailatha, E.; Gunasekaran, S.: Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim. Acta A Mol. Biomol. Specttrosc. 144, 17–22 (2015)CrossRefGoogle Scholar
  26. 26.
    Elumalai, K.; Velmurugan, S.: Green synthesis, characterization and antimicrobial activities of zincoxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl. Surf. Sci. 345, 329–336 (2015)CrossRefGoogle Scholar
  27. 27.
    Mishra, V.; Sharma, R.: Green synthesis of zinc oxide nanoparticles using fresh peels extract of Punica granatum and its antimicrobial activities. Int. J. Pharm. Res. Health Sci. 3, 694–699 (2015)Google Scholar
  28. 28.
    Madan, H.R.; Sharma, S.C.; Udayabhanu; Suresh, D.; Vidya, Y.S.; Nagabhushana, H.; Rajanaik, H.; Anantharaju, K.S.; Prashantha, S.C.; Maiya, P.S.: Facile green fabrication of nanostructure ZnO plates, bullets, flower, prismatic tip, closed pine cone: their antibacterial, antioxidant, photoluminescent and photocatalytic properties. Spectrochim. Acta A Mol. Biomol. Spectrosc 152, 404–416 (2016)Google Scholar
  29. 29.
    Akhil, K.; Jayakumar, J.; Gayathri, G.; Khan, S.S.: Effect of various capping agents on photocatalytic, antibacterial and antibiofilm activities of ZnO nanoparticles. J. Photochem. Photobiol. B Biol. 160, 32–42 (2016)CrossRefGoogle Scholar
  30. 30.
    Gondal, M.A.; Alzahrani, A.J.; Randhawa, M.A.; Siddiqui, M.N.: Morphology and antifungal effect of nano-ZnO and nano-Pd-doped nano-ZnO against Aspergillus and Candida. J. Environ. Sci. Health A 47, 1413–1418 (2012)CrossRefGoogle Scholar
  31. 31.
    Yamamoto, O.: Influence of particle size on the antimicrobial activity of zinc oxide. Int. J. Inorg. Mater. 3, 643–646 (2001)CrossRefGoogle Scholar
  32. 32.
    Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C.: Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Therapeut. 83, 761–769 (2008)CrossRefGoogle Scholar
  33. 33.
    Raghupathi, K.R.; Koodali, R.T.; Manna, A.C.: Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of Zinc oxide nanoparticles. Langmuir 27, 4020–4028 (2011)CrossRefGoogle Scholar
  34. 34.
    Satyavani, K.; Gurudeeban, S.; Ramanathan, T.; Balasubramanian, T.: Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. J. Nanobiotechnol.  https://doi.org/10.1186/1477-3155-9-43 (2011)
  35. 35.
    Sukirtha, R.; Priyanka, K.M.; Antony, J.J.; Kamalakkannan, S.; Thangam, R.; Gunasekaran, P.; Krishnan, M.; Achiraman, S.: Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process. Biochem. 42, 273–279 (2012)Google Scholar
  36. 36.
    Padalia, H.; Chanda, S.: Characterization, antifungal and cytotoxic evaluation of green synthesized zinc oxide nanoparticles using Ziziphus nummularia leaf extract. Artif. Cells Nanomed. Biotechnol.  https://doi.org/10.1080/21691401.2017.1282868 (2017)

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Gunjan Khara
    • 1
  • Hemali Padalia
    • 1
  • Pooja Moteriya
    • 1
  • Sumitra Chanda
    • 1
  1. 1.Department of Biosciences (UGC-CAS)Saurashtra UniversityRajkotIndia

Personalised recommendations