Skip to main content
Log in

Heat Transfer in a Fluidized Bed with Immersed Tubes Using Moist Coal Particles

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The moisture content of coal (MCC) has an important effect on the thermophysical properties and the granular flowability. However, it brings both active and negative influence to the heat transfer between the fluidizing moist coal and the immersed tubes in the fluidized bed. Four groups of bituminous coal with same size distribution (0.25–2.8 mm) but different MCC (7.86–15.18%) have been examined to study the variation of the heat transfer in an experimental setup. The average heat transfer coefficients \((h_{\mathrm{avg}})\) for the four groups of test samples have the same changing trend by increasing the superficial velocity \((U_{\mathrm{g}})\). However, the maximum heat transfer coefficients \((h_{\mathrm{max}})\) display different peak values. With the increase in MCC, the \(h_{\mathrm{max}}\) rises at first and begins to fall when reaching a critical value. To predict the \(h_{\mathrm{avg}}\) accurately with different MCC, the angle of repose has been imported to measure the variation of the granular flowability. A novel semiempirical correlation has been thereupon proposed by the dimensional analysis, and it accords well to the experimental data from this study and the previous research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ar:

Archimedes number

\(A_{\mathrm{t}}\) :

Surface area of heat transfer tube \(\left( \hbox {m}^{2}\right) \)

\(\hbox {Cp}_{\mathrm{g}}\) :

Specific heat of gas phase \(\left( \hbox {J}\,\hbox {kg}^{-1}\,\hbox {K}^{-1}\right) \)

\(\hbox {Cp}_{\mathrm{em}}\) :

Specific heat of emulsion phase \(\left( \hbox {J}\,\hbox {kg}^{-1}\,\hbox {K}^{-1}\right) \)

\(D_{\mathrm{t}}\) :

Diameter of heat transfer tube (mm)

\(d_{{i}}\) :

Mean diameter of particle between the screen mesh (mm)

\(d_{\mathrm{p}}\) :

Sauter mean diameter of particle (mm)

h :

Heat transfer coefficient \(\left( \hbox {W}\, \hbox {m}^{-2}\,\hbox {K}^{-1}\right) \)

\(h_{\mathrm{avg}}\) :

Average heat transfer coefficient \(\left( \hbox {W}\,\hbox {m}^{-2}\,\hbox {K}^{-1}\right) \)

\(h_{\mathrm{b}}\) :

Average heat transfer coefficient of bubble phase \(\left( \hbox {W}\,\hbox {m}^{-2}\,\hbox {K}^{-1}\right) \)

\(h_{\mathrm{em}}\) :

Average heat transfer coefficient of emulsion phase \(\left( \hbox {W}\,\hbox {m}^{-2}\,\hbox {K}^{-1}\right) \)

\(h_{{i}}\) :

Local heat transfer coefficient \(\left( \hbox {W}\, \hbox {m}^{-2}\,\hbox {K}^{-1}\right) \)

\(h_{{i},-90^{\circ }}\) :

Local heat transfer coefficient at \({-}90{^{\circ }}\,\left( \hbox {W}\,\hbox {m}^{-2}\,\hbox {K}^{-1}\right) \)

\(h_{{i},0^{\circ }}\) :

Local heat transfer coefficient at \(0{^{\circ }}\, \left( \hbox {W}\,\hbox {m}^{-2}\,\hbox {K}^{-1}\right) \)

\(h_{{i},+90^{\circ }}\) :

Local heat transfer coefficient at \({+}90{^{\circ }}\, \left( \hbox {W}\,\hbox {m}^{-2}\,\hbox {K}^{-1}\right) \)

I :

Electric current (A)

\({ Nu}_{\mathrm{em}}\) :

Nusselt number of emulsion phase

\({ Pr}_{\mathrm{em}}\) :

Prandtl number of emulsion phase

\({ Pr}_{\mathrm{g}}\) :

Prandtl number of gas phase

\({R}^{2}\) :

Square coefficient of association

Re :

Reynolds number

\(Re_{\mathrm{pmf}}\) :

Reynolds number at minimum fluidization

\(T_{\mathrm{b}}\) :

Bed temperature (K)

\(T_{\mathrm{t}}\) :

Tube surface temperature of heat transfer tube (K)

\(U_{\mathrm{g}}\) :

Superficial velocity \(\left( \hbox {m}\,\hbox {s}^{-1}\right) \)

\(U_{\mathrm{q}}\) :

Circumstance of the cross-sectional for the heat transfer tube (m)

V :

Electric voltage of heating rod (V)

w :

External moisture of coal (%)

\(x_{{i}}\) :

mass fraction (%)

\(\Delta {p}_{\mathrm{b}}\) :

Bed pressure drops (Pa)

\(\alpha _{\mathrm{b}}\) :

Bubble fraction

\(\beta \) :

The growth rate for angles of repose

\(\lambda _{\mathrm{em}}\) :

Thermal conductivity of emulsion phase \(\left( \hbox {W}\,\hbox {m}^{-1}\,\hbox {K}^{-1}\right) \)

\(\lambda _{\mathrm{p}}\) :

Particle thermal conductivity \(\left( \hbox {W}\,\hbox {m}^{-1}\,\hbox {K}^{-1}\right) \)

\(\lambda _{\mathrm{g}}\) :

Gas thermal conductivity \(\left( \hbox {W}\, \hbox {m}^{-1}\,\hbox {K}^{-1}\right) \)

\(\lambda _{\mathrm{HI}}\) :

Thermal conductivity of heat insulation material \(\left( \hbox {W}\,\hbox {m}^{-1}\,\hbox {K}^{-1}\right) \)

\(\mu _{\mathrm{g}}\) :

Dynamic viscosity \(\left( \hbox {Pa}\,\hbox {s}\right) \)

\(\varepsilon _{\mathrm{e}}\) :

Voidage of emulsion

\(\varepsilon _{\mathrm{mf}}\) :

Voidage at minimum fluidization

\(\rho _{\mathrm{g}}\) :

Gas density \(\left( \hbox {kg}\,\hbox {m}^{-3}\right) \)

\(\rho _{\mathrm{s}}\) :

Particle density \(\left( \hbox {kg}\,\hbox {m}^{-3}\right) \)

\(\varphi \) :

Shaper factor

\(\varphi _{0}\) :

Angle of repose for dry state (\({^{\circ }})\)

\(\varphi _{\mathrm{w}}\) :

Angle of repose for moist coal (\({^{\circ }})\)

CMC:

Coal moisture control

FBIT:

The fluidized bed with immersed tubes

MCC:

The moisture content of coal

References

  1. Nomura, S.; Arima, T.; Kato, K.: Coal blending theory for dry coal charging process. Fuel 83, 1771–1776 (2004)

    Article  Google Scholar 

  2. Das, S.K.; Nandy, A.S.; Paul, A.; Sahoo, B.K.; Chakraborty, B.; Das, A.: Coal blend moisture—a boon or bane in cokemaking? Coke Chem. 56, 126–136 (2013)

    Article  Google Scholar 

  3. Cui, P.; Qu, K.-L.; Ling, Q.; Cheng, L.-Y.; Cao, Y.-P.: Effects of coal moisture control and coal briquette technology on structure and reactivity of cokes. Coke Chem. 58, 162–169 (2015)

    Article  Google Scholar 

  4. Karthikeyan, M.; Zhonghua, W.; Mujumdar, A.S.: Low-rank coal drying technologies-current status and new developments. Dry. Technol. 27, 403–415 (2009)

    Article  Google Scholar 

  5. Osman, H.; Jangam, S.V.; Lease, J.D.; Mujumdar, A.S.: Drying of low-rank coal (LRC)—a review of recent patents and innovations. Dry. Technol. 29, 1763–1783 (2011)

    Article  Google Scholar 

  6. Rao, Z.; Zhao, Y.; Huang, C.; Duan, C.; He, J.: Recent developments in drying and dewatering for low rank coals. Prog. Energy Combust. Sci. 46, 1–11 (2015)

    Article  Google Scholar 

  7. Fan, L.S.; Zhu, C.: Principles of Gas–Solid Flows, 1st edn. Cambridge University Press, New York (2005)

    MATH  Google Scholar 

  8. Baskakov, A.P.; Berg, B.V.; Vitt, O.K.; Filippovsky, N.F.; Kirakosyan, V.A.; Goldobin, J.M.; Maskaev, V.K.: Heat transfer to objects immersed in fluidized beds. Powder Technol. 8, 273–282 (1973)

    Article  Google Scholar 

  9. Olsson, S.E.; Wiman, J.; Almstedt, A.E.: Hydrodynamics of a pressurized fluidized bed with horizontal tubes: influence of pressure, fluidization velocity and tube-bank geometry. Chem. Eng. Sci. 50, 581–592 (1995)

    Article  Google Scholar 

  10. Kim, S.W.; Ahn, J.Y.; Kim, S.D.; Lee, D.H.: Heat transfer and bubble characteristics in a fluidized bed with immersed horizontal tube bundle. Int. J. Heat Mass Transf. 46, 399–409 (2003)

    Article  Google Scholar 

  11. Srinivasakannan, C.; Al Shoibi, A.; Balasubramanian, N.: Combined resistance bubbling bed model for drying of solids in fluidized beds. Heat Mass Transf. 48, 621–625 (2011)

    Article  Google Scholar 

  12. Pence, D.V.; Beasley, D.E.; Figliola, R.S.: Heat transfer and surface renewal dynamics in gas-fluidized beds. Trans. ASME J. Heat Transf. 116, 929–937 (1994)

    Article  Google Scholar 

  13. Wong, Y.S.; Seville, J.P.K.: Single-particle motion and heat transfer in fluidized beds. AIChE J. 52, 4099–4109 (2006)

    Article  Google Scholar 

  14. Ozkaynak, T.F.; Chen, J.C.: Emulsion phase residence time and its use in heat transfer models in fluidized beds. AIChE J. 26, 544–550 (1980)

    Article  Google Scholar 

  15. Di Natale, F.; Bareschino, P.; Nigro, R.: Heat transfer and void fraction profiles around a horizontal cylinder immersed in a bubbling fluidised bed. Int. J. Heat Mass Transf. 53, 3525–3532 (2010)

    Article  MATH  Google Scholar 

  16. Di Natale, F.; Lancia, A.; Nigro, R.: A single particle model for surface-to-bed heat transfer in fluidized beds. Powder Technol. 187, 68–78 (2008)

    Article  Google Scholar 

  17. Ganzha, V.L.; Upadhyay, S.N.; Saxena, S.C.: A mechanistic theory for heat transfer between fluidized beds of large particles and immersed surfaces. Int. J. Heat Mass Transf. 25, 1531–1540 (1982)

    Article  MATH  Google Scholar 

  18. Kim, S.W.; Kim, S.D.: Heat transfer characteristics in a pressurized fluidized bed of fine particles with immersed horizontal tube bundle. Int. J. Heat Mass Transf. 64, 269–277 (2013)

    Article  Google Scholar 

  19. Lechner, S.; Merzsch, M.; Krautz, H.J.: Heat-transfer from horizontal tube bundles into fluidized beds with Geldart A lignite particles. Powder Technol. 253, 14–21 (2014)

    Article  Google Scholar 

  20. Masoumifard, N.; Mostoufi, N.; Hamidi, A.A.; Sotudeh-Gharebagh, R.: Investigation of heat transfer between a horizontal tube and gas–solid fluidized bed. Int. J. Heat Fluid Flow 29, 1504–1511 (2008)

    Article  Google Scholar 

  21. Mikami, T.; Kamiya, H.; Horio, M.: Numerical simulation of cohesive powder behavior in a fluidized bed. Chem. Eng. Sci. 53, 1927–1940 (1998)

    Article  Google Scholar 

  22. Passos, M.L.; Mujumdar, A.S.: Effect of cohesive forces on fluidized and spouted beds of wet particles. Powder Technol. 110, 222–238 (2000)

    Article  Google Scholar 

  23. Clarke, K.L.; Pugsley, T.; Hill, G.A.: Fluidization of moist sawdust in binary particle systems in a gas–solid fluidized bed. Chem. Eng. Sci. 60, 6909–6918 (2005)

    Article  Google Scholar 

  24. Hartman, M.; Trnka, O.; Svoboda, K.: Impediment to incipient fluidization in wet beds of porous nonspherical particles. Chem. Eng. Commun. 193, 100–115 (2006)

    Article  Google Scholar 

  25. Merzsch, M.; Lechner, S.; Krautz, H.J.: Heat-transfer from single horizontal tubes in fluidized beds: influence of tube diameter, moisture and diameter-definition by Geldart C fines content. Powder Technol. 235, 1038–1046 (2013)

    Article  Google Scholar 

  26. Rong, D.G.; Mikami, T.; Horio, M.: Particle and bubble movements around tubes immersed in fluidized beds—a numerical study. Chem. Eng. Sci. 54, 5737–5754 (1999)

    Article  Google Scholar 

  27. Wang, W.; Zhang, J.; Yang, S.; Zhang, H.; Yang, H.; Yue, G.: Experimental study on the angle of repose of pulverized coal. Particuology 8, 482–485 (2010)

    Article  Google Scholar 

  28. Matsuo, M.Y.; Nishiura, D.; Sakaguchi, H.: Geometric effect of angle of repose revisited. Granul. Matter 16, 441–447 (2014)

    Article  Google Scholar 

  29. Guo, Z.; Chen, X.; Liu, H.; Guo, Q.; Guo, X.; Lu, H.: Theoretical and experimental investigation on angle of repose of biomass-coal blends. Fuel 116, 131–139 (2014)

    Article  Google Scholar 

  30. Emery, E.; Oliver, J.; Pugsley, T.; Sharma, J.; Zhou, J.: Flowability of moist pharmaceutical powders. Powder Technol. 189, 409–415 (2009)

    Article  Google Scholar 

  31. Cain, J.: An alternative technique for determining ANSI/CEMA Standard 550 flowability ratings for granular materials. Powder Hand. Process. 14, 218–220 (2002)

    Google Scholar 

  32. Zhao, S.; Zhou, X.; Liu, W.: Discrete element simulations of direct shear tests with particle angularity effect. Granul. Matter 17(6), 793–806 (2015)

    Article  Google Scholar 

  33. Kamath, S.; Puri, V.M.; Manbeck, H.B.: Flow property measurement using the Jenike cell for wheat flour at various moisture contents and consolidation times. Powder Technol. 81, 293–297 (1994)

    Article  Google Scholar 

  34. Mickley, H.S.; Fairbanks, D.F.: Mechanism of heat transfer to fluidized beds. AIChE J. 1, 374–384 (1955)

    Article  Google Scholar 

  35. Herrin, J.M.; Deming, D.: Thermal conductivity of US coals. J. Geophys. Res. Solid Earth 101, 25381–25386 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiyang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Yu, H. & Li, R. Heat Transfer in a Fluidized Bed with Immersed Tubes Using Moist Coal Particles. Arab J Sci Eng 43, 2263–2272 (2018). https://doi.org/10.1007/s13369-017-2680-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2680-2

Keywords

Navigation