A new solution of Apollonius’ problem based on stereographic projections of Möbius and Laguerre planes

  • S. Gh. Taherian
  • S. Mohseni TakalooEmail author
Original Paper


In this paper we give a new proof of Apollonius’ problem based on the stereographic projection in spherical model of Möbius geometry and cylinder model of Laguerre geometry.


Möbius planes Laguerre planes Apollonius’ Problem Stereographic projection 

Mathematics Subject Classification

51B20 51H15 



  1. Benz, W.: Vorlesungen über Geometrie der Algebren, Band 197. Springer, Berlin (1973)CrossRefGoogle Scholar
  2. Blaschke, W.: Analytische Geometrie. Verlag Birkhäuser, Basel (1954)CrossRefzbMATHGoogle Scholar
  3. Bruen, A., Fisher, J.C., Wilker, J.B.: Apollonius by inversion. Math. Mag. 56, 97–103 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Budai, L.: A possible general approach of the Apollonius problem with the help of GeoGebra. Ann. Math. Inform 40, 163–173 (2013)MathSciNetGoogle Scholar
  5. Coxeter, H.S.M.: The problem of Apollonius. Am. Math. Mon. 58, 5–15 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Fitz- Gerald, J.M.: A note on a problem of Apollonius. J. Geom. 5, 15–26 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Heise, W.: Bericht über \(\kappa \) -affine Räume. J. Geom. 1, 197–224 (1971)CrossRefGoogle Scholar
  8. Hoshen, J.: The GPS equation and the problem of Apollonius. IEEE Trans. Aearospace Electron. Syst. 32, 1116–1124 (1996)CrossRefGoogle Scholar
  9. Knight, R.D.: The Apollonius contact problem and Lie geometry. J. Geom. 83, 137–157 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Lewis, R.H., Bridgell, S.: Conic tangency equation and Apollonius problem in biochemistry and pharmacology. Math. Comput. Simul. 61, 101–104 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Sasaki, Ch.: Descartes’s Mathematical Thought. Springer, New York (2003)CrossRefzbMATHGoogle Scholar
  12. Schroth, A.E.: Topological Circle Planes and Topological Quadrangles, Pitman Research Notes in Mathematics Series, vol. 337. Longman, Harlow (1995)zbMATHGoogle Scholar
  13. Stoll, V.: Zum Problem des Apollonius. Math. Ann. 6, 613–632 (1873)MathSciNetCrossRefzbMATHGoogle Scholar
  14. Taherian, S. G.: Koordinatisierung miquelscher Benz-Ebenen und ihre Anwendungen in der Kryptologie, Ph.D. thesis TUM (2001)Google Scholar

Copyright information

© The Managing Editors 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesIsfahan University of TechnologyIsfahanIran

Personalised recommendations