Skip to main content
Log in

Abstract

A topological invariant of the geodesic laminations on a modular surface is constructed. The invariant has a continuous part (the tail of a continued fraction) and a combinatorial part (the singularity data). It is shown, that the invariant is complete, i.e. the geodesic lamination can be recovered from the invariant. The continuous part of the invariant has geometric meaning of a slope of lamination on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. It is a tradition to reserve the term Chabauty topology for a topology on the set of all closed subgroups of a locally compact group. However, Canary, Epstein and Green (Canary et al. 1987) differ from the convention but point out that on metrizable space this is nothing but the Hausdorff topology.

References

  • Anosov, D.V.: Flows on closed surfaces and behavior of trajectories lifted to the universal covering plane. J. Dyn. Control Syst. 1, 125–138 (1995)

    Article  MathSciNet  Google Scholar 

  • Anosov, D.V., Zhuzhoma, E.V.: Nonlocal asymptotic behavior of curves and leaves of laminations on universal coverings. Proc. Steklov Inst. Math. 249(2) (2005)

  • Artin, E.: Ein mechanisches System mit quasiergodischen Bahnen, Abh. Math. Sem. Hamburg, 170–175. In: Collected papers, pp. 499–504. Springer , New York (1924)

  • Birman, J.S., Series, C.: An algorithm for simple curves on surfaces. J. Lond. Math. Soc. 29, 331–342 (1984)

    Article  MathSciNet  Google Scholar 

  • Canary, R.D., Epstein, D.B.A., Green, P.: Notes on notes of Thurston. Lond. Math. Soc. Lect. Notes 111, 3–92 (1987)

    MathSciNet  MATH  Google Scholar 

  • Casson, A.J., Bleiler, S.A.: Automorphisms of Surfaces after Nielsen and Thurston. Lond. Math. Soc. Student Texts 9, Cambridge (1988)

  • Gunning, R.C.: Lectures on Modular Forms. Princeton Univ. Press, Princeton (1962)

    MATH  Google Scholar 

  • Hubbard, J., Masur, H.: Quadratic differentials and foliations. Acta Math. 142, 221–274 (1979)

    Article  MathSciNet  Google Scholar 

  • Moeckel, R.: Geodesics on modular surfaces and continued fractions. Ergod. Theory. Dyn. Syst. 2, 69–83 (1982)

    Article  MathSciNet  Google Scholar 

  • Perron, O.: Die Lehre von den Kettenbrüchen, Bd.1, Teubner (1954)

  • Schwartzman, S.: Asymptotic cycles. Ann. Math. 66, 270–284 (1957)

    Article  MathSciNet  Google Scholar 

  • Series, C.: The modular surface and continued fractions. J. Lond. Math. Soc. 31, 69–80 (1985)

    Article  MathSciNet  Google Scholar 

  • Thurston, W.P.: Three-dimensional Geometry and Topology. Vol. 1, (Editor: Silvio Levy) Princeton Mathematical Series 35. Princeton Univ. Press, Princeton (1997)

  • Weil, A.: Les familles de courbes sur le tore. Mat. Sbornik 1, 779–781 (1936)

    MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to Samuil  Kh.  Aranson and Evgeny  V.  Zhuzhoma for an introduction to Weil’s problem. I thank the referee for a proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor V. Nikolaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, I.V. On a problem of A. Weil. Beitr Algebra Geom 59, 689–696 (2018). https://doi.org/10.1007/s13366-018-0383-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13366-018-0383-9

Keywords

Mathematics Subject Classification

Navigation