Skip to main content
Log in

Formulas for calculating the dimensions of the sums and the intersections of a family of linear subspaces with applications

  • Original Paper
  • Published:
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry Aims and scope Submit manuscript

Abstract

The union and the intersection of subspaces are fundamental operations in geometric algebra, while it is well known that both sum and intersection of linear subspaces in a vector space over a field are linear subspaces as well. A fundamental problem on a given family of linear subspaces is to determine the dimensions of their sum and intersection, as well as the orthogonal projectors onto the sum and the intersection of the family of linear subspaces. In this article, we first revisit an analytical formula for calculating the dimension of the intersection of a family of linear subspaces \({{\mathcal {M}}}_1, \, {{\mathcal {M}}}_2, \ldots , {\mathcal M}_k\) in a finite-dimensional vector space, and establish some analytical expressions of the orthogonal projector onto the intersection using generalized inverses of matrices. We then establish a general formula for calculating the dimension of the sum of the family of linear subspaces. We also give some applications of these formulas in determining the maximum and minimum dimensions of the intersections of column spaces of matrix products involving generalized inverses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baksalary, J.K., Baksalary, O.M.: An invariance property related to the reverse order law. Linear Algebra Appl. 410, 64–69 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Baksalary, J.K., Kala, R.: Range invariance of certain matrix products. Linear Multilinear Algebra 14, 89–96 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Baksalary, J.K., Mathew, T.: Linear sufficiency and completeness in an incorrectly specified general Gauss–Markov model. Sankhyā Ser A. 48, 169–180 (1986)

    MathSciNet  MATH  Google Scholar 

  • Baksalary, J.K., Pukkila, T.: A note on invariance of the eigenvalues, singular values, and norms of matrix products involving generalized inverses. Linear Algebra Appl. 165, 125–130 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Baksalary, O.M., Trenkler, G.: On a subspace metric based on matrix rank. Linear Algebra Appl. 432, 1475–1491 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Israel, A.: On the geometry of subspaces in euclidean n-spaces. SIAM J. Appl. Math. 15, 1184–1198 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Israel, A., Greville, T.N.E.: Generalized inverses: theory and applications, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  • Campbell, S.L., Meyer, C.D.: Generalized inverses of linear transformations. Corrected reprint of the 1979 original. Dover Publications, New York (1991)

    Google Scholar 

  • Friberg, H.A.: A relaxed-certificate facial reduction algorithm based on subspace intersection. Operat. Res. Lett. 44, 718–722 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Groß, J., Tian, Y.: Invariance properties of a triple matrix product involving generalized inverses. Linear Algebra Appl. 417, 94–107 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Halmos, P.R.: Finite-Dimensional Vector Spaces. Springer, New York (1974)

    Book  MATH  Google Scholar 

  • Jiang, B., Tian, Y.: Necessary and sufficient conditions for nonlinear matrix identities to always hold. Aequat Math. (2018). https://doi.org/10.1007/s00010-018-0610-3

  • Kollo, T., von Rosen, D.: Advanced Multivariate Statistics With Matrices. Springer, Dordrecht (2005). Kindly check and confirm publisher location for reference (Kollo 2005)

    Book  MATH  Google Scholar 

  • Kornacki, A.: Stability of invariant linearly sufficient statistics in the general Gauss–Markov model. Appl. Math. 42, 71–77 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Lebedinskaya, N.A., Lebedinskii, D.M.: On the possible dimensions of subspace intersections. Vestnik St. Petersburg Univ. Math. 49, 115–118 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Lebedinskaya, N.A., Lebedinskii, D.M., Smirnov, A.A.: On possible dimensions of subspace intersections for five direct summands. J. Math. Sci. 224, 937–941 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • López, W.: A new way of computing the orthogonal projection onto the intersection of two hyperplanes in a finite-dimensional Hilbert space. Appl. Math. E-Notes 18, 116–123 (2018)

    MathSciNet  MATH  Google Scholar 

  • Marsaglia, G., Styan, G.P.H.: Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 2, 269–292 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  • Piziak, R., Odell, P.L., Hahn, R.: Constructing projections on sums and intersections. Comput. Math. Appl. 37, 67–74 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Puntanen, S., Styan, G.P.H., Isotalo, J.: Matrix Tricks for Linear Statistical Models: Our Personal Top Twenty. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  • Rao, C.R., Mitra, S.K.: Generalized Inverse of Matrices and Its Applications. Wiley, New York (1971)

    MATH  Google Scholar 

  • Roman, S.: Advanced Linear Algebra. Springer, New York (1992)

    Book  MATH  Google Scholar 

  • Tian, Y.: Upper and lower bounds for ranks of matrix expressions using generalized inverses. Linear Algebra Appl. 355, 187–214 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Tian, Y.: The dimension of the intersection of \(k\) subspaces. Missouri J. Math. Sci. 14, 1–4 (2002)

    MathSciNet  MATH  Google Scholar 

  • Tian, Y.: Equalities and inequalities for ranks of products of generalized inverses of two matrices and their applications. J. Inequal. Appl. 182, 1–51 (2016)

    MathSciNet  MATH  Google Scholar 

  • Tian, Y.: How to establish exact formulas for calculating the max-min ranks of products of two matrices and their generalized inverses. Linear Multilinear Algebra 66, 22–73 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Tian, Y., Jiang, B.: Closed-form formulas for calculating the max–min ranks of a triple matrix product composed by generalized inverses. Comp. Appl. Math. 37, 5876–5919 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Tian, Y., Styan, G.P.H.: Rank equalities for idempotent and involutory matrices. Linear Algebra Appl. 335, 101–117 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Von Neumann, J.: Functional Operators. Vol II. The Geometry of Orthogonal Spaces. Princeton University Press, Princeton (1950)

    MATH  Google Scholar 

  • Xiong, Z., Qin, Y.: Invariance properties of an operator product involving generalized inverses. Electron. J. Linear Algebra 22, 694–703 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to an anonymous referee for his/her helpful comments and suggestions on an earlier version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongge Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y. Formulas for calculating the dimensions of the sums and the intersections of a family of linear subspaces with applications. Beitr Algebra Geom 60, 471–485 (2019). https://doi.org/10.1007/s13366-018-00432-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13366-018-00432-9

Keywords

Mathematics Subject Classification

Navigation