Advertisement

Rings in which every 2-absorbing ideal is prime

  • Driss Bennis
  • Brahim Fahid
Original Paper
  • 95 Downloads

Abstract

We are interested in rings where all 2-absorbing ideals are prime. We call such class of rings 2-AB rings. In this paper, we give a characterization of 2-AB rings, for example, we show that an integral valuation domain R is a 2-AB domain if and only if \(P^2 = P\) for every prime ideal P of R.

Keywords

2-Absorbing ideal Prime ideal 

Mathematics Subject Classification

13A15 13F30 

References

  1. Anderson, D.F., Badawi, A.: On (m, n)-closed ideals of commutative rings. J. Algebra Appl. 16, 1750013 [21 pages] (2017)Google Scholar
  2. Anderson, D.F., Badawi, A.: On \(n\)-absorbing ideals of commutative rings. Commun. Algebra 39, 1646–1672 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Badawi, A.: On \(2\)-absorbing ideals of commutative rings. Bull. Aust. Math. Soc. 75, 417–429 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Badawi, A., Darani, A.Y.: On weakly 2-absorbing ideals of commutative rings. Houst. J. Math. 39, 441–452 (2013)MathSciNetzbMATHGoogle Scholar
  5. Badawi, A., Tekir, U., Yetkin, E.: On 2-absorbing primary ideals in commutative rings. Soc. Bull. Korean Math. Soc. 51, 1163–1173 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. Choi, H.S., Walker, A.: The radical of an n-absorbing ideal. arXiv:1610.10077v1 (2016)
  7. Darani, A.Y., Puczylowski, E.R.: On 2-absorbing commutative semigroups and their applications to rings. Semigroup Forum 86, 83–91 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Hosry, A., Kim, Y., Validashti, J.: On the equality of ordinary and symbolic powers of ideals. J. Commun. Algebra 4, 281–292 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. Laradji, A.: On n-absorbing rings and ideals. Colloq. Math. 47, 265–273 (2017)Google Scholar
  10. Moghimi, H.F., Naghani, S.R.: On \(n\)-absorbing ideals and the \(n\)-krull dimension of a commutative ring. J. Korean Math. Soc. 53, 1225–1236 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. Sihem, S., Sana, H.: On Anderson-Badawi conjectures. Beitr Algebra Geom. 58, 775–785 (2017)Google Scholar

Copyright information

© The Managing Editors 2017

Authors and Affiliations

  1. 1.Faculty of Sciences, Centre de Recherche de Mathématiques et Applications de Rabat (CeReMAR)Mohammed V University in RabatRabatMorocco

Personalised recommendations