Machine learning prediction of neurocognitive impairment among people with HIV using clinical and multimodal magnetic resonance imaging data

Abstract

Diagnosis of HIV-associated neurocognitive impairment (NCI) continues to be a clinical challenge. The purpose of this study was to develop a prediction model for NCI among people with HIV using clinical- and magnetic resonance imaging (MRI)-derived features. The sample included 101 adults with chronic HIV disease. NCI was determined using a standardized neuropsychological testing battery comprised of seven domains. MRI features included gray matter volume from high-resolution anatomical scans and white matter integrity from diffusion-weighted imaging. Clinical features included demographics, substance use, and routine laboratory tests. Least Absolute Shrinkage and Selection Operator Logistic regression was used to perform variable selection on MRI features. These features were subsequently used to train a support vector machine (SVM) to predict NCI. Three different classification tasks were performed: one used only clinical features; a second used only selected MRI features; a third used both clinical and selected MRI features. Model performance was evaluated by area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity with a tenfold cross-validation. The SVM classifier that combined selected MRI with clinical features outperformed the model using clinical features or MRI features alone (AUC: 0.83 vs. 0.62 vs. 0.79; accuracy: 0.80 vs. 0.65 vs. 0.72; sensitivity: 0.86 vs. 0.85 vs. 0.86; specificity: 0.71 vs. 0.37 vs. 0.52). Our results provide preliminary evidence that combining clinical and MRI features can increase accuracy in predicting NCI and could be developed as a potential tool for NCI diagnosis in HIV clinical practice.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abdulkadir A, Mortamet B, Vemuri P, Jack Jr CR, Krueger G, Kloppel S, Alzheimer's Disease Neuroimaging Initiative (2011) Effects of hardware heterogeneity on the performance of SVM Alzheimer’s disease classifier. Neuroimage 58(3):785–792. https://doi.org/10.1016/j.neuroimage.2011.06.029

  2. Adeli E, Kwon D, Zhao Q, Pfefferbaum A, Zahr NM, Sullivan EV, Pohl KM (2018) Chained regularization for identifying brain patterns specific to HIV infection. Neuroimage 183:425–437. https://doi.org/10.1016/j.neuroimage.2018.08.022

    Article  PubMed  PubMed Central  Google Scholar 

  3. Adeli E, Zahr NM, Pfefferbaum A, Sullivan EV, Pohl KM (2019) Novel machine learning identifies brain patterns distinguishing diagnostic membership of human immunodeficiency virus, alcoholism, and their comorbidity of individuals. Biol Psychiatry Cogn Neurosci Neuroimaging 4(6):589–599. https://doi.org/10.1016/j.bpsc.2019.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  4. Akgun KM, Gordon K, Pisani M, Fried T, McGinnis KA, Tate JP, Butt AA, Gibert CL, Huang L, Rodriguez-Barradas MC, Rimland D, Justice AC, Crothers K (2013) Risk factors for hospitalization and medical intensive care unit (MICU) admission among HIV-infected Veterans. J Acquir Immune Defic Syndr 62(1):52–59. https://doi.org/10.1097/QAI.0b013e318278f3fa

    Article  PubMed  PubMed Central  Google Scholar 

  5. Andersson JLR, Jenkinson M, Smith S (2007) Non-linear Registration, aka Spatial Normalisation, in FMIRB Analysis Group Technical Reports. Oxford Centre for Functional MRI of the Brain: Oxford, United Kingdom.

  6. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69(18):1789–1799. https://doi.org/10.1212/01.WNL.0000287431.88658.8b

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Banerjee N, McIntosh RC, Ironson G (2019) Impaired neurocognitive performance and mortality in HIV: assessing the prognostic value of the hiv-dementia scale. AIDS Behav 23(12):3482–3492. https://doi.org/10.1007/s10461-019-02423-w

    Article  PubMed  PubMed Central  Google Scholar 

  8. Belete T, Medfu G, Yemiyamrew E (2017) Prevalence of HIV associated neurocognitive deficit among HIV positive people in Ethiopia: a cross sectional study at Ayder Referral Hospital. Ethiop J Health Sci 27(1):67–76. https://doi.org/10.4314/ejhs.v27i1.9

    Article  PubMed  PubMed Central  Google Scholar 

  9. Benloucif S, Orbeta L, Ortiz R, Janssen I, Finkel SI, Bleiberg J, Zee PC (2004) Morning or evening activity improves neuropsychological performance and subjective sleep quality in older adults. Sleep 27(8):1542–1551. https://doi.org/10.1093/sleep/27.8.1542

    Article  PubMed  Google Scholar 

  10. Benton A, Hamsher K, Sivan A (1983) Multilingual Aphasia Examination, 3rd edn. AJA Associates, Iowa City, IA

    Google Scholar 

  11. Brandt J, Benedict RHB (2001) Hopkins Verbal Learning Test—revised professional manual. Psychological Assessment Resources Inc, Lutz, FL

    Google Scholar 

  12. Carey CL, Woods SP, Gonzalez R, Conover E, Marcotte TD, Grant I, Heaton RK (2004) Predictive validity of global deficit scores in detecting neuropsychological impairment in HIV infection. J Clin Exp Neuropsychol 26(3):307–319. https://doi.org/10.1080/13803390490510031

    Article  PubMed  Google Scholar 

  13. Chen NK, Chang HC, Bilgin A, Bernstein A, Trouard TP (2018) A diffusion-matched principal component analysis (DM-PCA) based two-channel denoising procedure for high-resolution diffusion-weighted MRI. PLoS ONE 13(4):e0195952. https://doi.org/10.1371/journal.pone.0195952

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Chichetto NE, Kundu S, Freiberg MS, Butt AA, Crystal S, So-Armah KA, Cook RL, Braithwaite RS, Fiellin DA, Khan MR, Bryant KJ, Gaither JR, Barve SS, Crothers K, Bedimo RJ, Warner AL, Tindle HA, Veterans Aging Cohort S (2019) Association of Syndemic Unhealthy Alcohol Use, Cigarette Use, and Depression With All-Cause Mortality Among Adults Living With and Without HIV Infection: Veterans Aging Cohort Study. Open Forum Infect Dis, 6(6), ofz188. https://doi.org/10.1093/ofid/ofz188

  15. Chockanathan U, AM DS, Abidin AZ, Schifitto G, Wismuller A (2018) Identification and functional characterization of HIV-associated neurocognitive disorders with large-scale Granger causality analysis on resting-state functional MRI. Proc SPIE Int Soc Opt Eng, 10575. https://doi.org/10.1117/12.2293888

  16. Chockanathan U, AM DS, Abidin AZ, Schifitto G, Wismuller A (2019) Automated diagnosis of HIV-associated neurocognitive disorders using large-scale Granger causality analysis of resting-state functional MRI. Comput Biol Med 106:24–30. https://doi.org/10.1016/j.compbiomed.2019.01.006

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297. https://doi.org/10.1007/BF00994018

    Article  Google Scholar 

  18. Cysique LA, Soares JR, Geng G, Scarpetta M, Moffat K, Green M, Brew BJ, Henry RG, Rae C (2017) White matter measures are near normal in controlled HIV infection except in those with cognitive impairment and longer HIV duration. J Neurovirol 23(4):539–547. https://doi.org/10.1007/s13365-017-0524-1

    Article  PubMed  Google Scholar 

  19. De Francesco D, Underwood J, Post FA, Vera JH, Williams I, Boffito M, Sachikonye M, Anderson J, Mallon PW, Winston A, Sabin CA, Group PS (2016) Defining cognitive impairment in people-living-with-HIV: the POPPY study. BMC Infect Dis 16(1):617. https://doi.org/10.1186/s12879-016-1970-8

    Article  PubMed  PubMed Central  Google Scholar 

  20. Diehr MC, Cherner M, Wolfson TJ, Miller SW, Grant I, Heaton RK (2003) The 50 and 100-item short forms of the Paced Auditory Serial Addition Task (PASAT): demographically corrected norms and comparisons with the full PASAT in normal and clinical samples. J Clin Exp Neuropsychol 25(4):571–585. https://doi.org/10.1076/jcen.25.4.571.13876

  21. Douaud G, Smith S, Jenkinson M, Behrens T, Johansen-Berg H, Vickers J, James S, Voets N, Watkins K, Matthews PM, James A (2007) Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia. Brain 130(9):2375–2386

    Article  Google Scholar 

  22. DSouza AM, Abidin AZ, Chockanathan U, Wismüller A (2018) Regional autonomy changes in resting-state functional MRI in patients with HIV associated neurocognitive disorder. Paper presented at the Medical Imaging 2018: Image Processing.

  23. Dyrba M, Barkhof F, Fellgiebel A, Filippi M, Hausner L, Hauenstein K, Kirste T, Teipel SJ, Group ES (2015) Predicting prodromal Alzheimer’s disease in subjects with mild cognitive impairment using machine learning classification of multimodal multicenter diffusion-tensor and magnetic resonance imaging data. J Neuroimaging 25(5):738–747. https://doi.org/10.1111/jon.12214

    Article  PubMed  Google Scholar 

  24. Gisslen M, Price RW, Nilsson S (2011) The definition of HIV-associated neurocognitive disorders: are we overestimating the real prevalence? BMC Infect Dis 11:356. https://doi.org/10.1186/1471-2334-11-356

    Article  PubMed  PubMed Central  Google Scholar 

  25. Golden CJ (1978) Stroop Color and Word Test. Stoelting, Chicago, IL

    Google Scholar 

  26. Golden CJ, Freshwater SM (2002) The Stroop color and word test: a manual for clinical and experimental uses. Stoelting, Chicago, IL

    Google Scholar 

  27. Good CD, Johnsrude IS, Ashburner J Richard, Henson NA, Friston KJ, Frackowiak RSJ (2001) A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains. NeuroImage 14(1):21–36

    CAS  Article  Google Scholar 

  28. Grabyan JM, Morgan EE, Cameron MV, Villalobos J, Grant I, Woods PS, Group HIVNRP (2018) Deficient emotion processing is associated with everyday functioning capacity in HIV-associated neurocognitive disorder. Arch Clin Neuropsychol 33(2):184–193. https://doi.org/10.1093/arclin/acx058

    Article  PubMed  Google Scholar 

  29. Haller S, Badoud S, Nguyen D, Garibotto V, Lovblad KO, Burkhard PR (2012) Individual detection of patients with Parkinson disease using support vector machine analysis of diffusion tensor imaging data: initial results. AJNR Am J Neuroradiol 33(11):2123–2128. https://doi.org/10.3174/ajnr.A3126

    CAS  Article  PubMed  Google Scholar 

  30. Haller S, Nguyen D, Rodriguez C, Emch J, Gold G, Bartsch A, Lovblad KO, Giannakopoulos P (2010) Individual prediction of cognitive decline in mild cognitive impairment using support vector machine-based analysis of diffusion tensor imaging data. J Alzheimers Dis 22(1):315–327. https://doi.org/10.3233/JAD-2010-100840

    Article  PubMed  Google Scholar 

  31. Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I, Group C (2010) HIV associated neurocognitive disorders persist in the era of potent antiretroviral therapy CHARTER. Study Neurology 75(23):2087–2096. https://doi.org/10.1212/WNL.0b013e318200d727

    CAS  Article  PubMed  Google Scholar 

  32. Heaton RK, Grant I, Butters N, White DA, Kirson D, Atkinson JH, McCutchan JA, Taylor MJ, Kelly MD, Ellis RJ et al (1995) The HNRC 500--neuropsychology of HIV infection at different disease stages. HIV Neurobehavioral Research Center. J Int Neuropsychol Soc, 1(3):231–251. https://doi.org/10.1017/s1355617700000230

  33. Heaton RK, Kirson D, Velin RA, IGRO Grant, Group H (1994) The utility of clinical ratings for detecting cognitive change in HIV infection. Neuropsychology of HIV infection (pp. 188–206). New York: Oxford University.

  34. Heaton RK, Marcotte TD, Mindt MR, Sadek J, Moore DJ, Bentley H, McCutchan JA, Reicks C, Grant I, Group H (2004) The impact of HIV-associated neuropsychological impairment on everyday functioning. J Int Neuropsychol Soc 10(3):317–331. https://doi.org/10.1017/S1355617704102130

  35. Heaton RK, Miller SW, Taylor MJ, Grant I (2004) Revised comprehensive norms for an expanded halstead-reitan battery: demographically adjusted neuropsychological norms for African American and Caucasian adults. Psychological Assessment Resources Inc, Lutz, FL

  36. Heaton RK, Psychological Assessment Resources I (2004) Revised comprehensive norms for an expanded Halstead-Reitan battery: demographically adjusted neuropsychological norms for African American and Caucasian adults. Psychological Assessment Resources, Professional Manual

  37. Israel SM, Hassanzadeh-Behbahani S, Turkeltaub PE, Moore DJ, Ellis RJ, Jiang X (2019) Different roles of frontal versus striatal atrophy in HIV-associated neurocognitive disorders. Hum Brain Mapp 40(10):3010–3026. https://doi.org/10.1002/hbm.24577

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) FSL NeuroImage 62(2):782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015

    Article  PubMed  Google Scholar 

  39. Jones DK (2008) Tractography gone wild: probabilistic fibre tracking using the wild bootstrap with diffusion tensor MRI. IEEE Trans Med Imaging 27(9):1268–1274

    Article  Google Scholar 

  40. Joska JA, Witten J, Thomas KG, Robertson C, Casson-Crook M, Roosa H, Creighton J, Lyons J, McArthur J, Sacktor NC (2016) A comparison of five brief screening tools for HIV-associated neurocognitive disorders in the USA and South Africa. AIDS Behav 20(8):1621–1631. https://doi.org/10.1007/s10461-016-1316-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Klove H (1963) Grooved Pegboard. Lafayette Instruments, Lafayette, IN

    Google Scholar 

  42. Kumar S, Himanshu D, Tandon R, Atam V, Sawlani KK, Verma SK (2019) Prevalence of HIV Associated neurocognitive disorder using modified Mini Mental State Examination and its correlation with CD4 counts and anti-retroviral therapy. J Assoc Physicians India 67(4):47–51

    PubMed  Google Scholar 

  43. Kuper M, Rabe K, Esser S, Gizewski ER, Husstedt IW, Maschke M, Obermann M (2011) Structural gray and white matter changes in patients with HIV. J Neurol 258(6):1066–1075. https://doi.org/10.1007/s00415-010-5883-y

    Article  PubMed  Google Scholar 

  44. Libbrecht MW, Noble WS (2015) Machine learning applications in genetics and genomics. Nat Rev Genet 16(6):321–332. https://doi.org/10.1038/nrg3920

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Mansson KN, Frick A, Boraxbekk CJ, Marquand AF, Williams SC, Carlbring P, Andersson G, Furmark T (2015) Predicting long-term outcome of Internet-delivered cognitive behavior therapy for social anxiety disorder using fMRI and support vector machine learning. Transl Psychiatry 5:e530. https://doi.org/10.1038/tp.2015.22

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Marquine MJ, Umlauf A, Rooney AS, Fazeli PL, Gouaux BD, Paul Woods S, Letendre SL, Ellis RJ, Grant I, Moore DJ, Group HIVNRP (2016) The Veterans Aging Cohort Study (VACS) index and neurocognitive change: a longitudinal study. Clin Infect Dis 63(5):694–702. https://doi.org/10.1093/cid/ciw328

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Marquine MJ, Umlauf A, Rooney AS, Fazeli PL, Gouaux BD, Paul Woods S, Letendre SL, Ellis RJ, Grant I, Moore DJ, Group HIVNRP (2014) The veterans aging cohort study index is associated with concurrent risk for neurocognitive impairment. J Acquir Immune Defic Syndr 65(2):190–197. https://doi.org/10.1097/QAI.0000000000000008

    Article  PubMed  PubMed Central  Google Scholar 

  48. McLellan AT, Kushner H, Metzger D, Peters R, Smith I, Grissom G, Pettinati H, Argeriou M (1992) The Fifth Edition of the Addiction Severity Index. J Subst Abuse Treat, 9(3):199–213. https://doi.org/10.1016/0740-5472(92)90062-s

  49. Meade CS, Addicott M, Hobkirk AL, Towe SL, Chen NK, Sridharan S, Huettel SA (2018) Cocaine and HIV are independently associated with neural activation in response to gain and loss valuation during economic risky choice. Addict Biol 23(2):796–809. https://doi.org/10.1111/adb.12529

    CAS  Article  PubMed  Google Scholar 

  50. Meade CS, Bell RP, Towe SL, Chen NK, Hobkirk AL, Huettel SA (2019) Synergistic effects of marijuana abuse and HIV infection on neural activation during a cognitive interference task. Addict Biol 24(6):1235–1244. https://doi.org/10.1111/adb.12678

    Article  PubMed  Google Scholar 

  51. Meade CS, Hobkirk AL, Towe SL, Chen NK, Bell RP, Huettel SA (2017) Cocaine dependence modulates the effect of HIV infection on brain activation during intertemporal decision making. Drug Alcohol Depend 178:443–451. https://doi.org/10.1016/j.drugalcdep.2017.05.043

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Nightingale S, Winston A, Letendre S, Michael BD, McArthur JC, Khoo S, Solomon T (2014) Controversies in HIV-associated neurocognitive disorders. Lancet Neurol 13(11):1139–1151. https://doi.org/10.1016/S1474-4422(14)70137-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Nunn AS, da Fonseca EM, Bastos FI, Gruskin S (2009) AIDS treatment in Brazil: impacts and challenges. Health Aff (Millwood) 28(4):1103–1113. https://doi.org/10.1377/hlthaff.28.4.1103

    Article  Google Scholar 

  54. Oguz I, Farzinfar M, Matsui J, Budin F, Liu Z, Gerig G, Johnson HJ, Styner M (2014) DTIPrep: quality control of diffusion-weighted images. Frontiers in Neuroinformatics 8:4. https://doi.org/10.3389/fninf.2014.00004

    Article  PubMed  PubMed Central  Google Scholar 

  55. Oh SW, Shin NY, Choi JY, Lee SK, Bang MR (2018) Altered white matter integrity in human immunodeficiency virus-associated neurocognitive disorder: a tract-based spatial statistics study. Korean J Radiol 19(3):431–442. https://doi.org/10.3348/kjr.2018.19.3.431

    Article  PubMed  PubMed Central  Google Scholar 

  56. Reitan RM, Wolfson D (1993) The Halstead-Reitan neuropsychological test battery: theory and clinical interpretation, 2nd edn. Neuropsycholgy Press, Tucson, AZ

    Google Scholar 

  57. Salinas JL, Rentsch C, Marconi VC, Tate J, Budoff M, Butt AA, Freiberg MS, Gibert CL, Goetz MB, Leaf D, Rodriguez-Barradas MC, Justice AC, Rimland D (2016) Baseline, time-updated, and cumulative HIV care metrics for predicting acute myocardial infarction and all-cause mortality. Clin Infect Dis 63(11):1423–1430. https://doi.org/10.1093/cid/ciw564

    Article  PubMed  PubMed Central  Google Scholar 

  58. Santos GMA, Locatelli I, Metral M, Calmy A, Lecompte TD, Nadin I, Hauser C, Cusini A, Hasse B, Kovari H, Tarr P, Stoeckle M, Fux C, Di Benedetto C, Schmid P, Darling KEA, Du Pasquier R, Cavassini M, Neurocognitive Assessment in the, M., & Aging Cohort Study, G (2019) Cross-Sectional and Cumulative Longitudinal Central Nervous System Penetration Effectiveness Scores Are Not Associated With Neurocognitive Impairment in a Well Treated Aging Human Immunodeficiency Virus-Positive Population in Switzerland. Open Forum Infect Dis, 6(7), ofz277. https://doi.org/10.1093/ofid/ofz277

  59. Seelye A, Mattek N, Howieson D, Riley T, Wild K, Kaye J (2015) The impact of sleep on neuropsychological performance in cognitively intact older adults using a novel in-home sensor-based sleep assessment approach. Clin Neuropsychol, 29(1):53-66. https://doi.org/10.1080/13854046.2015.1005139

  60. Sexton CE, Kalu UG, Filippini N, Mackay CE, Ebmeier KP (2011) A meta-analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease. Neurobiol Aging, 32(12), 2322 e2325–2318. https://doi.org/10.1016/j.neurobiolaging.2010.05.019

  61. Smith RE, Tournier J-D, Calamante F, Connelly A (2012) Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. NeuroImage 62(3):1924–1938

    Article  Google Scholar 

  62. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(Suppl 1):S208-219. https://doi.org/10.1016/j.neuroimage.2004.07.051

    Article  PubMed  Google Scholar 

  63. Stern RA, White T (2009) NAB Digits Forward/Digits Backward Test: Professional Manual. Lutz, FL: Psychological Assessment Resources, Inc. (PAR)

  64. Tang Z, Liu Z, Li R, Yang X, Cui X, Wang S, Yu D, Li H, Dong E, Tian J (2017a) Identifying the white matter impairments among ART-naive HIV patients: a multivariate pattern analysis of DTI data. Eur Radiol 27(10):4153–4162. https://doi.org/10.1007/s00330-017-4820-1

    Article  PubMed  Google Scholar 

  65. Tang Z, Liu Z, Li R, Yang X, Cui X, Wang S, Yu D, Li H, Dong E, Tian J (2017b) Identifying the white matter impairments among ART-naïve HIV patients: a multivariate pattern analysis of DTI data. Eur Radiol 27(10):4153–4162

    Article  Google Scholar 

  66. Tate JP, Justice AC, Hughes MD, Bonnet F, Reiss P, Mocroft A, Nattermann J, Lampe FC, Bucher HC, Sterling TR, Crane HM, Kitahata MM, May M, Sterne JAC (2013) An internationally generalizable risk index for mortality after one year of antiretroviral therapy. AIDS 27(4):563–572. https://doi.org/10.1097/QAD.0b013e32835b8c7f

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tate JP, Sterne JAC, Justice AC, Veterans Cohort Collaboration Study and the Antiretroviral Therapy Cohort Collaboration (2019) Albumin, white blood cell count, and body mass index improve discrimination of mortality in HIV-positive individuals. AIDS 33(5):903–912. https://doi.org/10.1097/QAD.0000000000002140

  68. Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J Roy Stat Soc: Ser B (Methodol) 58(1):267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

    Article  Google Scholar 

  69. Tournier JD, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, Christiaens D, Jeurissen B, Yeh CH, Connelly A (2019) MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202:116137. https://doi.org/10.1016/j.neuroimage.2019.116137

    Article  PubMed  Google Scholar 

  70. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29(6):1310

    Article  Google Scholar 

  71. Underwood J, De Francesco D, Leech R, Sabin CA, Winston A, Pharmacokinetic and Clinical Observations in PeoPle Over fifty (2018) Medicalising normality? Using a simulated dataset to assess the performance of different diagnostic criteria of HIV-associated cognitive impairment. PLoS One, 13(4), e0194760. https://doi.org/10.1371/journal.pone.0194760

  72. Wagner GA, Chaillon A, Liu S, Franklin DR Jr, Caballero G, Kosakovsky Pond SL, Vaida F, Heaton RK, Letendre SL, Grant I, Richman DD, Smith DM (2016) HIV-associated neurocognitive disorder is associated with HIV-1 dual infection. AIDS 30(17):2591–2597. https://doi.org/10.1097/QAD.0000000000001237

    Article  PubMed  PubMed Central  Google Scholar 

  73. Xiao Y, Yan Z, Zhao Y, Tao B, Sun H, Li F, Yao L, Zhang W, Chandan S, Liu J, Gong Q, Sweeney JA, Lui S (2017) Support vector machine-based classification of first episode drug-naive schizophrenia patients and healthy controls using structural MRI. Schizophr Res. https://doi.org/10.1016/j.schres.2017.11.037

    Article  PubMed  Google Scholar 

  74. Zandvakili A, Philip NS, Jones SR, Tyrka AR, Greenberg BD, Carpenter LL (2019) Use of machine learning in predicting clinical response to transcranial magnetic stimulation in comorbid posttraumatic stress disorder and major depression: a resting state electroencephalography study. J Affect Disord 252:47–54. https://doi.org/10.1016/j.jad.2019.03.077

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zeng LL, Shen H, Liu L, Hu D (2014) Unsupervised classification of major depression using functional connectivity MRI. Hum Brain Mapp 35(4):1630–1641. https://doi.org/10.1002/hbm.22278

    Article  PubMed  Google Scholar 

  76. Zhou C, Cheng Y, Ping L, Xu J, Shen Z, Jiang L, Shi L, Yang S, Lu Y, Xu X (2018) Support vector machine classification of obsessive-compulsive disorder based on whole-brain volumetry and diffusion tensor imaging. Front Psychiatry 9:524. https://doi.org/10.3389/fpsyt.2018.00524

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zipursky AR, Gogolishvili D, Rueda S, Brunetta J, Carvalhal A, McCombe JA, Gill MJ, Rachlis A, Rosenes R, Arbess G, Marcotte T, Rourke SB (2013) Evaluation of brief screening tools for neurocognitive impairment in HIV/AIDS: a systematic review of the literature. AIDS 27(15):2385–2401. https://doi.org/10.1097/QAD.0b013e328363bf56

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by grant R01-DA045565 and R25-AI140495 from the US National Institutes of Health.

Funding

National Institute on Drug Abuse (R01-DA045565) Dr. Christina S. Meade, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (R25-AI140495) Dr. Cliburn Chan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yunan Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Lin, Y., Bell, R.P. et al. Machine learning prediction of neurocognitive impairment among people with HIV using clinical and multimodal magnetic resonance imaging data. J. Neurovirol. (2021). https://doi.org/10.1007/s13365-020-00930-4

Download citation

Keywords

  • Neurocognitive impairment
  • People with HIV
  • MRI
  • Machine learning
  • Prediction