A longitudinal study of brain volume changes in rhesus macaque model infected with SIV

Abstract

Given the current lack of understanding of brain volume changes caused by HIV infection, this study aimed to longitudinally assess the changes in regional brain tissue volume following HIV infection and to explore its relationship with peripheral blood absolute CD4+ lymphocyte count (CD4+), the percentage of monocytes in plasma(MON%) and cerebrospinal fluid viral load (CFVL).Four adult male rhesus monkeys were examined in healthy status and following infection with simian immunodeficiency virus using high-resolution 3D T1-weighted sagittal whole brain magnetic resonance imaging. DPABI and SPM were used to process and record changes in brain tissue volume. Correlation analyses were then used to explore the above relationships. Compared with brain tissue volume during the healthy stage, there was no change at 12 and 24 weeks postinoculation (12 wpi, 24 wpi). At 36 wpi, 48 wpi, and 60 wpi, basal ganglia, left inferior temporal gyrus, left occipital gyrus, and left superior frontal gyrus exhibited varying degrees of atrophy. There was no association found between CD4+, MON%, CFVL, and brain volume loss in any brain region. Our research demonstrated that in the early stage of HIV infection, local brain tissue atrophy can be demonstrated by MRI technique; furthermore, MRI can identify the earliest site of atrophy as well as the most severely affected site. Although there was no significant correlation between brain tissue volume loss and CD4+, MON%, and CFVL, our findings provided some evidence in the application of volumetric MR imaging in the early diagnosis and treatment follow-up of patients with HIV infection.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Anzinger J, Butterfield T, Angelovich T, Crowe S, Palmer CJ JoIR(2014) Monocytes as regulators of inflammation and HIV-related comorbidities during cART. J Immunol Res 2014:569819

    PubMed  PubMed Central  Google Scholar 

  2. Becker JT, Lopez OL, Dew MA, Aizenstein HJ (2004) Prevalence of cognitive disorders differs as a function of age in HIV virus infection. Aids 18(Suppl 1):S11–S8.Eng

    PubMed  Google Scholar 

  3. Becker JT, Sanders J, Madsen SK, Ragin A, Kingsley L, Maruca V, Cohen B, Goodkin K, Martin E, Miller EN, Sacktor N, Alger JR, Barker PB, Saharan P, Carmichael OT, Thompson PM, Multicenter ACS (2011) Subcortical brain atrophy persists even in HAART-regulated HIV disease. Brain Imaging Behav 5:77–85

    PubMed  PubMed Central  Google Scholar 

  4. Berger JR, Arendt G (2000) HIV dementia: the role of the basal ganglia and dopaminergic systems. J Psychopharmacol 14:214–221

    CAS  PubMed  Google Scholar 

  5. Cattie JE, Doyle K, Weber E, Grant I, Woods SP (2012) Planning deficits in HIV-associated neurocognitive disorders: component processes, cognitive correlates, and implications for everyday functioning. Journal of Clinical & Experimental Neuropsychology 34:906–918

    Google Scholar 

  6. Chang L, Speck O, Miller EN, Braun J, Jovicich J, Koch C, Itti L, Ernst T (2001) Neural correlates of attention and working memory deficits in HIV patients. Neurology 57:1001–1007

    CAS  PubMed  Google Scholar 

  7. Chang L, Ernst T, Witt MD, Ames N, Gaiefsky M, Miller E (2002) Relationships among brain metabolites, cognitive function, and viral loads in antiretroviral-Naı̈ve HIV patients. Neuroimage 17:1638–1648

    PubMed  Google Scholar 

  8. Chiang MC, Dutton RA, Hayashi KM, Lopez OL, Aizenstein HJ, Toga AW, Becker JT, Thompson PM (2007) 3D pattern of brain atrophy in HIV/AIDS mapping using tensor-based morphometry. Neuroimage 34:44–60

    PubMed  Google Scholar 

  9. Chomczynski P, Wilfinger W, Kennedy A, Rymaszewski M, Mackey K (2013) RNAzol[reg] BD: a reagent for the effective isolation of RNA from whole blood. Nat Methods 10:ii

    Google Scholar 

  10. Churchill M, Nath A (2013) Where does HIV hide? A focus on the central nervous system. Curr Opin HIV AIDS 8:165–169

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Douek DC, Brenchley JM, Betts MR, Ambrozak DR, Hill BJ, Yukari O, Casazza JP, Janaki K, Kevin K, Steven W (2002) HIV preferentially infects HIV-specific CD4+ T cells. Nature 417:95–98

    CAS  PubMed  Google Scholar 

  12. Du H, Wu Y, Ochs R, Edelman RR, Epstein LG, McArthur J, Ragin AB (2012) A comparative evaluation of quantitative neuroimaging measurements of brain status in HIV infection. Psychiatry Res 203:95–99

    PubMed  PubMed Central  Google Scholar 

  13. Ellis R, Langford D, Masliah E (2007) HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nature Review Neuroscience 8:33–44

    CAS  Google Scholar 

  14. Ellis RJ, Jayraan B, Florin V, Scott L, Heaton RK, David C, Collier AC, Benjamin G, Justin MA, Susan M (2011) CD4 nadir is a predictor of HIV neurocognitive impairment in the era of combination antiretroviral therapy. Aids 25:1747–1751

    CAS  PubMed  Google Scholar 

  15. Ge Y, Kolson DL, Babb JS, Mannon LJ, Grossman RI (2003) Whole brain imaging of HIV-infected patients: quantitative analysis of magnetization transfer ratio histogram and fractional brain volume. AJNR Am J Neuroradiol 24:82

    PubMed  Google Scholar 

  16. Giesen HJ, Von, Antke C, ., Hefter H, ., Wenserski F, ., Seitz RJ, Arendt G, . (2000). Potential time course of human immunodeficiency virus type 1-associated minor motor deficits: electrophysiologic and positron emission tomography findings. Arch Neurol 57: 1601–1607

    Google Scholar 

  17. Gonzalez RG, Fell R, He J, Campbell J, Burdo TH, Autissier P, Annamalai L, Taheri F, Parker T, Lifson JD, Halpern EF, Vangel M, Masliah E, Westmoreland SV, Williams KC, Ratai EM (2018) Temporal/compartmental changes in viral RNA and neuronal injury in a primate model of NeuroAIDS. PLoS One 13:e0196949

    PubMed  PubMed Central  Google Scholar 

  18. Gonzálezscarano F, Martíngarcía J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5:69–81

    Google Scholar 

  19. Hassanzadeh-Behbahani S, Shattuck KF, Bronshteyn M, Dawson M, Diaz M, Kumar P, Moore DJ, Ellis RJ, Jiang X (2019) Low CD4 nadir linked to widespread cortical thinning in adults living with HIV. Neuroimage Clin 25:102155

    PubMed  PubMed Central  Google Scholar 

  20. Heaton RK, Clifford DB, Franklin DR, Jr., Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I (2010). HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology 75: 2087-96.Eng

  21. Hinkin CH, van Gorp WG, Mandelkern MA, Gee M, Satz P, Holston S, Marcotte TD, Evans G, Paz DH, Ropchan JR (1995) Cerebral metabolic change in patients with AIDS: report of a six-month follow-up using positron-emission tomography. J Neuropsychiatr Clin Neurosci 7:180

    CAS  Google Scholar 

  22. Joska JA, Westgarthtaylor J, Myer L, Hoare J, Thomas KG, Combrinck M, Paul RH, Stein DJ, Flisher AJ (2011) Characterization of HIV-associated neurocognitive disorders among individuals starting antiretroviral therapy in South Africa. Aids & Behavior 15:1197–1203

    Google Scholar 

  23. Kallianpur KJ, Kirk GR, Sailasuta N, Valcour V, Shiramizu B, Nakamoto BK, Shikuma C (2012) Regional cortical thinning associated with detectable levels of HIV DNA. Cereb Cortex 22:2065–2075

    PubMed  Google Scholar 

  24. Kaul M, Garden GA, Lipton SA (2001) Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410:988–994

    CAS  PubMed  Google Scholar 

  25. Kaul M, Zheng J, Okamoto S, Gendelman HE, Lipton SA (2005) HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ 12(Suppl 1):878–892

    CAS  PubMed  Google Scholar 

  26. Lackner AA, Dandekar S, Gardner MB (2010) Neurobiology of simian and feline immunodeficiency virus infections. Brain Pathol 1:201–212

    Google Scholar 

  27. Lentz MR, Kim WK, Kim H, Soulas C, Lee V, Venna N, Halpern EF, Rosenberg ES, Williams K, González RG (2011) Alterations in brain metabolism during the first year of HIV infection. J Neurovirol 17:220–229

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Li J, Gao L, Wen Z, Zhang J, Wang P, Tu N, Lei H, Lin F, Gui X, Wu G (2018) Structural covariance of gray matter volume in HIV vertically infected adolescents. Sci Rep 8:1182

    PubMed  PubMed Central  Google Scholar 

  29. Lifson JD, Rossio JL, Piatak M, Parks T, Li L, Kiser R, Coalter V, Fisher B, Flynn BM, Czajak S (2001) Role of CD8(+) lymphocytes in control of simian immunodeficiency virus infection and resistance to rechallenge after transient early antiretroviral treatment. J Virol 75:10187–10199

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Linda C, Dardo T, Renat Y, Carl L, Sheeba A, Elisabeth C, Thomas E (2010) Adaptation of the attention network in human immunodeficiency virus brain injury. Ann Neurol 56:259–272

    Google Scholar 

  31. Liping Z, Hong S, Zining Z, Yanan W, Gefei L, Wanying S, Haibo D (2007) Correlation between the function of monocytes/macrophages and disease progression in people living with HIV/AIDS in several provinces in China. National Medical Journal Of China 087:2394–2397 (in Chinese)

    Google Scholar 

  32. Mark R, Robert W, Jill R, Martin DJ, Boone KB (2002) A meta-analysis of the neuropsychological sequelae of HIV infection. Journal of the International Neuropsychological Society Jins 8:410–424

    Google Scholar 

  33. Mattson MP, Haughey NJ, Nath A (2005) Cell death in HIV dementia. Cell Death & Differentiation 12(Suppl 1):893

    CAS  Google Scholar 

  34. Michael K (2011). Structural gray and white matter changes in patients with HIV. J Neurol 6

  35. Naeser MA, Helm-Estabrooks N, Haas G, Auerbach S, Srinivasan M (1987) Relationship between lesion extent in ‘Wernicke’s area’ on computed tomographic scan and predicting recovery of comprehension in Wernicke's aphasia. Arch Neurol 44:73–82

    CAS  PubMed  Google Scholar 

  36. Nir TM, Jahanshad N, CRK C, Cohen RA, Harezlak J, Schifitto G, Lam HY, Hua X, Zhong J, Zhu T, Taylor MJ, Campbell TB, Daar ES, Singer EJ, Alger JR, Thompson PM, Navia BA, Consortium HIVN (2019) Progressive brain atrophy in chronically infected and treated HIV+ individuals. J Neuro-Oncol 25:342–353

    Google Scholar 

  37. Novembre F, De-Rosayro JN, Sp AD, Klumpp S, Mcclure H (1998) Isolation and characterization of a neuropathogenic simian immunodeficiency virus derived from a sooty mangabey. J Virol 72:8841–8851

    CAS  PubMed  PubMed Central  Google Scholar 

  38. O'Neil SP, Carolyn S, Anderson DC, Genevieve N, Juliette B, Novembre FJ, Herndon JG, Mcclure HM (2004) Correlation of acute humoral response with brain virus burden and survival time in pig-tailed macaques infected with the neurovirulent simian immunodeficiency virus SIVsmmFGb. Am J Pathol 164:1157–1172

    PubMed  PubMed Central  Google Scholar 

  39. Ragin AB, Ying W, Storey P, Cohen BA, Edelman RR, Epstein LG (2005) Diffusion tensor imaging of subcortical brain injury in patients infected with human immunodeficiency virus. J Neurovirol 11:292–298

    PubMed  PubMed Central  Google Scholar 

  40. Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J, Mcarthur JC, Collier AC, Evans SR, Ellis RJ (2007) The prevalence and incidence of neurocognitive impairment in the HAART era. Aids 21:1915–1921

    PubMed  Google Scholar 

  41. Rohlfing T, Kroenke CD, Sullivan EV, Dubach MF, Bowden DM, Grant KA, Pfefferbaum A (2012) The INIA19 template and NeuroMaps atlas for primate brain image Parcellation and spatial normalization. Front Neuroinform 6:27

    PubMed  PubMed Central  Google Scholar 

  42. Scutari R, Alteri C, Perno CF, Svicher V, Aquaro S (2017) The role of HIV infection in neurologic injury. Brain Sci 7:38

    PubMed Central  Google Scholar 

  43. Sharer LR, Michaels J, Murphey-Corb M, Hu FS, Kuebler DJ, Martin LN, Baskin GB (1991) Serial pathogenesis study of SIV brain infection. J Med Primatol 20:211

    CAS  PubMed  Google Scholar 

  44. Stout JC, Ellis RJ, Jernigan TL, Archibald SL, Abramson I, Wolfson T, Mccutchan JA, Wallace MR, Atkinson JH, Grant I (1998) Progressive cerebral volume loss in human immunodeficiency virus infection: a longitudinal volumetric magnetic resonance imaging study. HIV neurobehavioral research center group. Arch Neurol 55:161–168

    CAS  PubMed  Google Scholar 

  45. Tai-sheng (2006) Guidelines for diagnosis and treatment of HIV/AIDS in China (2005). Chin Med J 119:1589–1608

    Google Scholar 

  46. Tate DF, Sampat M, Harezlak J, Fiecas M, Hogan J, Dewey J, Mccaffrey D, Branson D, Russell T, Conley J (2011) Erratum to: regional areas and widths of the midsagittal corpus callosum among HIV-infected patients on stable antiretroviral therapies. J Neurovirol 17:368–379

    PubMed  PubMed Central  Google Scholar 

  47. Thompson PM, Dutton RA, Hayashi KM, Toga AW, Lopez OL, Aizenstein HJ, Becker JT (2005) Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4+ T lymphocyte decline. Proc Natl Acad Sci U S A 102:15647–15652

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Thurnher MM, M Judith DP (2008) Neuroimaging in the brain in HIV-1-infected patients. Neuroimaging Clin N Am 18:93–117

    PubMed  Google Scholar 

  49. Tozzi V, Balestra P, Bellagamba R, Corpolongo A, Salvatori MF, Visco-Comandini U, Vlassi C, Giulianelli M, Galgani S, Antinori A (2007) Persistence of Neuropsychologic deficits despite long-term highly active antiretroviral therapy in patients with HIV-related neurocognitive impairment: prevalence and risk factors. J Acquir Immune Defic Syndr 45:174–182

    Google Scholar 

  50. UNAIDS (2019). Global HIV & AIDS statistics _2019 fact sheet. https://www.unaids.org/en/resources/fact-sheet

  51. von Giesen HJ, Wittsack HJ, Wenserski F, Köller H, Hefter H, Arendt G (2001) Basal ganglia metabolite abnormalities in minor motor disorders associated with human immunodeficiency virus type 1. Arch Neurol 58:1281

    Google Scholar 

  52. Wilson EMP, Singh A, Hullsiek KH, Gibson D, Henry WK, Lichtenstein K, Onen NF, Kojic E, Patel P, Brooks JT (2014) Monocyte-activation phenotypes are associated with biomarkers of inflammation and coagulation in chronic HIV infection. J Infect Dis 210:1396–1406

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Woods SP, Moore DJ, Weber E, Grant I (2009) Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychol Rev 19:152–168

    PubMed  PubMed Central  Google Scholar 

  54. Yunfang L, Hongjun L, Quansheng G, Da Y, Jing Z (2014) Structural gray matter change early in male patients with HIV. Int J Clin Exp Med 7:3362–3369

    Google Scholar 

Download references

Acknowledgments

This author would like to thank Dr. Nanshou Wu at South China Normal University for supporting for data processing.

Funding

This study was funded by the National Nature Science Foundation of China (81571634, 61936013).

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparations were performed by Haifeng Mi, Jiaojiao Liu, and Bonan Song. Data collection was performed by Bonan Song and Yuanyuan Wang, and analysis was performed by Bonan Song, Yunfang Li, Dan Liu, Wei Wang, and Jun Sun. The first draft of the manuscript was written by Bonan Song, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hongjun Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, B., Li, Y., Liu, J. et al. A longitudinal study of brain volume changes in rhesus macaque model infected with SIV. J. Neurovirol. (2020). https://doi.org/10.1007/s13365-020-00864-x

Download citation

Keywords

  • HIV
  • Brain volume
  • Atrophy
  • Longitudinally
  • 3D T1