Journal of NeuroVirology

, Volume 24, Issue 4, pp 398–410 | Cite as

Persistent EcoHIV infection induces nigral degeneration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-intoxicated mice

  • Katherine E. Olson
  • Aditya N. Bade
  • Krista L. Namminga
  • Mary Jane Potash
  • R. Lee Mosley
  • Larisa Y. Poluektova
  • David J. Volsky
  • Howard E. GendelmanEmail author


The widespread use of antiretroviral therapy for treatment of human immunodeficiency virus (HIV) infections has dramatically improved the quality and duration of life for HIV-positive individuals. Despite this success, HIV persists for the life of an infected person in tissue reservoirs including the nervous system. Thus, whether HIV exacerbates age-related brain disorders such as Parkinson’s disease (PD) is of concern. In support of this idea, HIV infection can be associated with motor and gait abnormalities that parallel late-stage manifestations of PD including dopaminergic neuronal loss. With these findings in hand, we investigated whether viral infection could affect nigrostriatal degeneration or exacerbate chemically induced nigral degeneration. We now demonstrate an additive effect of EcoHIV on dopaminergic neuronal loss and neuroinflammation induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication. HIV-1-infected humanized mice failed to recapitulate these EcoHIV results suggesting species-specific neural signaling. The results demonstrate a previously undefined EcoHIV-associated neurodegenerative response that may be used to model pathobiological aspects of PD.


Parkinson’s disease Central nervous system EcoHIV Human immunodeficiency virus 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 



We thank the University of Nebraska Medical Center Flow Cytometry Core Research Facility for the flow cytometric data acquisition and technical support and Dr. Rebecca Wilshusen and Dr. Charles Schutt for their assistance with the mouse studies. We wish to thank Dr. Eran Hadas for the preparation of the EcoHIV used in these studies. This work was supported in part by NIH Grants AG043540, DA028555, NS036126, NS034239, MH064570, NS043985, and MH062261; DOD Grant 421-20-09A; and the Carol Swarts Emerging Neuroscience Fund to HEG, MH086372, MH083627, DA017618, DA037611, MH104145, DA037611 (DJV), MH104145 (DJV and HEG), and NS094146 (MJP).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest


  1. Benner EJ, Banerjee R, Reynolds AD, Sherman S, Pisarev VM, Tsiperson V, Nemachek C, Ciborowski P, Przedborski S, Mosley RL, Gendelman HE (2008) Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One 3:e1376CrossRefPubMedPubMedCentralGoogle Scholar
  2. Berger JR, Arendt G (2000) HIV dementia: the role of the basal ganglia and dopaminergic systems. J Psychopharmacol 14:214–221CrossRefPubMedGoogle Scholar
  3. Boyd JT, Wangensteen KJ, Krawitt EL, Hamill RW, Kao CH, Tsai HH (2016) Hepatitis C virus infection as a risk factor for Parkinson disease: a nationwide cohort study. Neurology 87:342CrossRefPubMedGoogle Scholar
  4. Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay JM, Duyckaerts C, Flavell RA, Hirsch EC, Hunot S (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 119:182–192PubMedGoogle Scholar
  5. Burke RE, O'Malley K (2013) Axon degeneration in Parkinson’s disease. Exp Neurol 246:72–83CrossRefPubMedGoogle Scholar
  6. Cardoso F (2002) HIV-related movement disorders: epidemiology, pathogenesis and management. CNS Drugs 16:663–668CrossRefPubMedGoogle Scholar
  7. Cardoso SW, Torres TS, Santini-Oliveira M, Marins LM, Veloso VG, Grinsztejn B (2013) Aging with HIV: a practical review. Braz J Infect Dis 17:464–479CrossRefPubMedGoogle Scholar
  8. Chai Q, Jovasevic V, Malikov V, Sabo Y, Morham S, Walsh D, Naghavi MH (2017) HIV-1 counteracts an innate restriction by amyloid precursor protein resulting in neurodegeneration. Nat Commun 8:1522CrossRefPubMedPubMedCentralGoogle Scholar
  9. Clifford DB, Ances BM (2013) HIV-associated neurocognitive disorder. Lancet Infect Dis 13:976–986CrossRefPubMedPubMedCentralGoogle Scholar
  10. Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, Young SA, Mills RG, Wachsman W, Wiley CA (1992) Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology 42:1736–1739CrossRefPubMedGoogle Scholar
  11. Deleidi M, Isacson O (2012) Viral and inflammatory triggers of neurodegenerative diseases. Sci Transl Med 4:121ps123CrossRefGoogle Scholar
  12. Dickens AM, Yoo SW, Chin AC, Xu J, Johnson TP, Trout AL, Hauser KF, Haughey NJ (2017) Chronic low-level expression of HIV-1 tat promotes a neurodegenerative phenotype with aging. Sci Rep 7:7748CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ellis RJ, Calero P, Stockin MD (2009) HIV infection and the central nervous system: a primer. Neuropsychol Rev 19:144–151CrossRefPubMedPubMedCentralGoogle Scholar
  14. Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW (2006) CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci 26:1098–1106CrossRefPubMedGoogle Scholar
  15. Fiume G, Vecchio E, De Laurentiis A, Trimboli F, Palmieri C, Pisano A, Falcone C, Pontoriero M, Rossi A, Scialdone A, Fasanella Masci F, Scala G, Quinto I (2012) Human immunodeficiency virus-1 tat activates NF-kappaB via physical interaction with IkappaB-alpha and p65. Nucleic Acids Res 40:3548–3562CrossRefPubMedGoogle Scholar
  16. Gaskill PJ, Miller DR, Gamble-George J, Yano H, Khoshbouei H (2017) HIV, tat and dopamine transmission. Neurobiol Dis 105:51–73CrossRefPubMedPubMedCentralGoogle Scholar
  17. Geraghty P, Hadas E, Kim BH, Dabo AJ, Volsky DJ, Foronjy R (2017) HIV infection model of chronic obstructive pulmonary disease in mice. Am J Physiol Lung Cell Mol Physiol 312:L500–L509CrossRefPubMedPubMedCentralGoogle Scholar
  18. Groger A, Kolb R, Schafer R, Klose U (2014) Dopamine reduction in the substantia nigra of Parkinson's disease patients confirmed by in vivo magnetic resonance spectroscopic imaging. PLoS One 9:e84081CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hadas E, Borjabad A, Chao W, Saini M, Ichiyama K, Potash MJ, Volsky DJ (2007) Testing antiretroviral drug efficacy in conventional mice infected with chimeric HIV-1. AIDS 21:905–909CrossRefPubMedGoogle Scholar
  20. Haddad D, Nakamura K (2015) Understanding the susceptibility of dopamine neurons to mitochondrial stressors in Parkinson’s disease. FEBS Lett 589:3702–3713CrossRefPubMedPubMedCentralGoogle Scholar
  21. He H, Sharer LR, Chao W, Gu CJ, Borjabad A, Hadas E, Kelschenbach J, Ichiyama K, Do M, Potash MJ, Volsky DJ (2014) Enhanced human immunodeficiency virus type 1 expression and neuropathogenesis in knockout mice lacking type I interferon responses. J Neuropathol Exp Neurol 73:59–71CrossRefPubMedGoogle Scholar
  22. Hernandez JC, Stevenson M, Latz E, Urcuqui-Inchima S (2012) HIV type 1 infection up-regulates TLR2 and TLR4 expression and function in vivo and in vitro. AIDS Res Hum Retrovir 28:1313–1328CrossRefPubMedGoogle Scholar
  23. Hirsch EC, Vyas S, Hunot S (2012) Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S210–S212CrossRefPubMedGoogle Scholar
  24. Hong S, Banks WA (2015) Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun 45:1–12CrossRefPubMedGoogle Scholar
  25. Hu XT (2016) HIV-1 tat-mediated calcium dysregulation and neuronal dysfunction in vulnerable brain regions. Curr Drug Targets 17:4–14CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jackson-Lewis V, Przedborski S (2007) Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2:141–151CrossRefPubMedGoogle Scholar
  27. Jang H, Boltz DA, Webster RG, Smeyne RJ (2009) Viral parkinsonism. Biochim Biophys Acta 1792:714–721CrossRefPubMedGoogle Scholar
  28. Jin J, Lam L, Sadic E, Fernandez F, Tan J, Giunta B (2012) HIV-1 tat-induced microglial activation and neuronal damage is inhibited via CD45 modulation: a potential new treatment target for HAND. Am J Transl Res 4:302–315PubMedPubMedCentralGoogle Scholar
  29. Jones GJ, Barsby NL, Cohen EA, Holden J, Harris K, Dickie P, Jhamandas J, Power C (2007) HIV-1 Vpr causes neuronal apoptosis and in vivo neurodegeneration. J Neurosci 27:3703–3711CrossRefPubMedGoogle Scholar
  30. Jones LD, Jackson JW, Maggirwar SB (2016) Modeling HIV-1 induced neuroinflammation in mice: role of platelets in mediating blood-brain barrier dysfunction. PLoS One 11:e0151702CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jones M, Olafson K, Del Bigio MR, Peeling J, Nath A (1998) Intraventricular injection of human immunodeficiency virus type 1 (HIV-1) tat protein causes inflammation, gliosis, apoptosis, and ventricular enlargement. J Neuropathol Exp Neurol 57:563–570CrossRefPubMedGoogle Scholar
  32. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912CrossRefPubMedGoogle Scholar
  33. Karim S, Mirza Z, Kamal MA, Abuzenadah AM, Azhar EI, Al-Qahtani MH, Damanhouri GA, Ahmad F, Gan SH, Sohrab SS (2014) The role of viruses in neurodegenerative and neurobehavioral diseases. CNS Neurol Disord Drug Targets 13:1213–1223CrossRefPubMedGoogle Scholar
  34. Khanlou N, Moore DJ, Chana G, Cherner M, Lazzaretto D, Dawes S, Grant I, Masliah E, Everall IP (2009) Increased frequency of alpha-synuclein in the substantia nigra in human immunodeficiency virus infection. J Neuro-Oncol 15:131–138Google Scholar
  35. Knibbe-Hollinger JS, Fields NR, Chaudoin TR, Epstein AA, Makarov E, Akhter SP, Gorantla S, Bonasera SJ, Gendelman HE, Poluektova LY (2015) Influence of age, irradiation and humanization on NSG mouse phenotypes. Biol Open 4:1243–1252CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kosloski LM, Kosmacek EA, Olson KE, Mosley RL, Gendelman HE (2013) GM-CSF induces neuroprotective and anti-inflammatory responses in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxicated mice. J Neuroimmunol 265:1–10CrossRefPubMedGoogle Scholar
  37. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318CrossRefPubMedGoogle Scholar
  38. Kumar AM, Fernandez JB, Singer EJ, Commins D, Waldrop-Valverde D, Ownby RL, Kumar M (2009) Human immunodeficiency virus type 1 in the central nervous system leads to decreased dopamine in different regions of postmortem human brains. J Neuro-Oncol 15:257–274Google Scholar
  39. Kumar AM, Ownby RL, Waldrop-Valverde D, Fernandez B, Kumar M (2011) Human immunodeficiency virus infection in the CNS and decreased dopamine availability: relationship with neuropsychological performance. J Neuro-Oncol 17:26–40Google Scholar
  40. Kurkowska-Jastrzebska I, Wronska A, Kohutnicka M, Czlonkowski A, Czlonkowska A (1999) The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. Exp Neurol 156:50–61CrossRefPubMedGoogle Scholar
  41. Kwon DS, Kaufmann DE (2010) Protective and detrimental roles of IL-10 in HIV pathogenesis. Eur Cytokine Netw 21:208–214PubMedGoogle Scholar
  42. Li W, Gorantla S, Gendelman HE, Poluektova LY (2017) Systemic HIV-1 infection produces a unique glial footprint in humanized mouse brains. Dis Model Mech 10:1489-1502Google Scholar
  43. Lu SM, Tremblay ME, King IL, Qi J, Reynolds HM, Marker DF, Varrone JJ, Majewska AK, Dewhurst S, Gelbard HA (2011) HIV-1 tat-induced microgliosis and synaptic damage via interactions between peripheral and central myeloid cells. PLoS One 6:e23915CrossRefPubMedPubMedCentralGoogle Scholar
  44. McArthur JC, Brew BJ, Nath A (2005) Neurological complications of HIV infection. Lancet Neurol 4:543–555CrossRefPubMedGoogle Scholar
  45. Meeker RB, Hudson L (2017) Feline immunodeficiency virus neuropathogenesis: a model for HIV-induced CNS inflammation and neurodegeneration. Vet Sci 4(1).
  46. Mirsattari SM, Power C, Nath A (1998) Parkinsonism with HIV infection. Mov Disord 13:684–689CrossRefPubMedGoogle Scholar
  47. Mochizuki H, Yamada M, Mizuno Y (2006) Alpha-synuclein overexpression model. J Neural Transm Suppl (70):281-284Google Scholar
  48. Moulignier A, Gueguen A, Lescure FX, Ziegler M, Girard PM, Cardon B, Pialoux G, Molina JM, Brandel JP, Lamirel C (2015) Does HIV infection alter Parkinson disease? J Acquir Immune Defic Syndr 70:129–136CrossRefPubMedGoogle Scholar
  49. Munoz-Manchado AB, Villadiego J, Romo-Madero S, Suarez-Luna N, Bermejo-Navas A, Rodriguez-Gomez JA, Garrido-Gil P, Labandeira-Garcia JL, Echevarria M, Lopez-Barneo J, Toledo-Aral JJ (2016) Chronic and progressive Parkinson’s disease MPTP model in adult and aged mice. J Neurochem 136:373–387CrossRefPubMedGoogle Scholar
  50. Naoi M, Maruyama W (1999) Cell death of dopamine neurons in aging and Parkinson’s disease. Mech Ageing Dev 111:175–188CrossRefPubMedGoogle Scholar
  51. Navia BA, Jordan BD, Price RW (1986) The AIDS dementia complex: I. Clinical features. Ann Neurol 19:517–524CrossRefPubMedGoogle Scholar
  52. Pakpoor J, Noyce A, Goldacre R, Selkihova M, Mullin S, Schrag A, Lees A, Goldacre M (2017) Viral hepatitis and Parkinson disease: a national record-linkage study. Neurology 88:1630–1633CrossRefPubMedGoogle Scholar
  53. Potash MJ, Chao W, Bentsman G, Paris N, Saini M, Nitkiewicz J, Belem P, Sharer L, Brooks AI, Volsky DJ (2005) A mouse model for study of systemic HIV-1 infection, antiviral immune responses, and neuroinvasiveness. Proc Natl Acad Sci U S A 102:3760–3765CrossRefPubMedPubMedCentralGoogle Scholar
  54. Renauld JC, Vink A, Louahed J, Van Snick J (1995) Interleukin-9 is a major anti-apoptotic factor for thymic lymphomas. Blood 85:1300–1305PubMedGoogle Scholar
  55. Rosso AL, Mattos JP, Correa RB, Nicaretta DH, Novis SA (2009) Parkinsonism and AIDS: a clinical comparative study before and after HAART. Arq Neuropsiquiatr 67:827–830CrossRefPubMedGoogle Scholar
  56. Sheng WS, Hu S, Hegg CC, Thayer SA, Peterson PK (2000) Activation of human microglial cells by HIV-1 gp41 and tat proteins. Clin Immunol 96:243–251CrossRefPubMedGoogle Scholar
  57. Sheppard DP, Iudicello JE, Bondi MW, Doyle KL, Morgan EE, Massman PJ, Gilbert PE, Woods SP (2015) Elevated rates of mild cognitive impairment in HIV disease. J Neuro-Oncol 21:576–584Google Scholar
  58. Silvers JM, Aksenova MV, Aksenov MY, Mactutus CF, Booze RM (2007) Neurotoxicity of HIV-1 tat protein: involvement of D1 dopamine receptor. Neurotoxicology 28:1184–1190CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sindberg GM, Sharma U, Banerjee S, Anand V, Dutta R, Gu CJ, Volsky DJ, Roy S (2015) An infectious murine model for studying the systemic effects of opioids on early HIV pathogenesis in the gut. J NeuroImmune Pharmacol 10:74–87CrossRefPubMedGoogle Scholar
  60. Ungvarski PJ, Trzcianowska H (2000) Neurocognitive disorders seen in HIV disease. Issues Ment Health Nurs 21:51–70CrossRefPubMedGoogle Scholar
  61. Williams DW, Eugenin EA, Calderon TM, Berman JW (2012) Monocyte maturation, HIV susceptibility, and transmigration across the blood brain barrier are critical in HIV neuropathogenesis. J Leukoc Biol 91:401–415CrossRefPubMedPubMedCentralGoogle Scholar
  62. Williams KC, Hickey WF (2002) Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu Rev Neurosci 25:537–562CrossRefPubMedGoogle Scholar
  63. Wilson TW, Heinrichs-Graham E, Robertson KR, Sandkovsky U, O'Neill J, Knott NL, Fox HS, Swindells S (2013) Functional brain abnormalities during finger-tapping in HIV-infected older adults: a magnetoencephalography study. J NeuroImmune Pharmacol 8:965–974CrossRefPubMedGoogle Scholar
  64. Wing EJ (2016) HIV and aging. Int J Infect Dis 53:61–68CrossRefPubMedGoogle Scholar
  65. Wright ST, Carr A, Woolley I, Giles M, Hoy J, Cooper DA, Law MG (2011) CD4 cell responses to combination antiretroviral therapy in patients starting therapy at high CD4 cell counts. J Acquir Immune Defic Syndr 58:72–79CrossRefPubMedPubMedCentralGoogle Scholar
  66. Zauli G, Secchiero P, Rodella L, Gibellini D, Mirandola P, Mazzoni M, Milani D, Dowd DR, Capitani S, Vitale M (2000) HIV-1 tat-mediated inhibition of the tyrosine hydroxylase gene expression in dopaminergic neuronal cells. J Biol Chem 275:4159–4165CrossRefPubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2018

Authors and Affiliations

  • Katherine E. Olson
    • 1
  • Aditya N. Bade
    • 1
  • Krista L. Namminga
    • 1
  • Mary Jane Potash
    • 2
  • R. Lee Mosley
    • 1
  • Larisa Y. Poluektova
    • 1
  • David J. Volsky
    • 2
  • Howard E. Gendelman
    • 1
    Email author
  1. 1.Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative DisordersUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Department of Medicine, Infectious Diseases DivisionIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations