Skip to main content

Advertisement

Log in

Treatment of Theiler’s virus-induced demyelinating disease with teriflunomide

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Teriflunomide is an oral therapy approved for the treatment of relapsing remitting multiple sclerosis (MS), showing both anti-inflammatory and antiviral properties. Currently, it is uncertain whether one or both of these properties may explain teriflunomide’s beneficial effect in MS. Thus, to learn more about its mechanisms of action, we evaluated the effect of teriflunomide in the Theiler’s encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) model, which is both a viral infection and an excellent model of the progressive disability of MS. We assessed the effects of the treatment on central nervous system (CNS) viral load, intrathecal immune response, and progressive neurological disability in mice intracranially infected with TMEV. In the TMEV-IDD model, we showed that teriflunomide has both anti-inflammatory and antiviral properties, but there seemed to be no impact on disability progression and intrathecal antibody production. Notably, benefits in TMEV-IDD were mostly mediated by effects on various cytokines produced in the CNS. Perhaps the most interesting result of the study has been teriflunomide’s antiviral activity in the CNS, indicating it may have a role as an antiviral prophylactic and therapeutic compound for CNS viral infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ascherio A (2013) Environmental factors in multiple sclerosis. Expert Rev Neurother 13:3–9

    Article  PubMed  Google Scholar 

  • Bar-Or A, Pachner A, Menguy-Vacheron F, Kaplan J, Wiendl H (2014) Teriflunomide and its mechanism of action in multiple sclerosis. Drugs 74:659–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardina SV, Lim JK (2012) The role of chemokines in the pathogenesis of neurotropic flaviviruses. Immunol Res 54:121–132

    Article  CAS  PubMed  Google Scholar 

  • Becker M, Latarche C, Roman E, Debouverie M, Malaplate-Armand C, Guillemin F (2015) No prognostic value of routine cerebrospinal fluid biomarkers in a population-based cohort of 407 multiple sclerosis patients. BMC Neurol 15:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Berger JR, Houff SA, Major EO (2009) Monoclonal antibodies and progressive multifocal leukoencephalopathy. MAbs 1:583–589

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergstrom T (1999) Herpesviruses—a rationale for antiviral treatment in multiple sclerosis. Antivir Res 41:1–19

    Article  CAS  PubMed  Google Scholar 

  • Cash E, Bandeira A, Chirinian S, Brahic M (1989) Characterization of B lymphocytes present in the demyelinating lesions induced by Theiler’s virus. J Immunol 143:984–988

    CAS  PubMed  Google Scholar 

  • Chalkley J, Berger JR (2014) Multiple sclerosis remission following antiretroviral therapy in an HIV-infected man. J Neuro-Oncol 20:640–643

    Google Scholar 

  • Chon WJ, Kadambi PV, Xu C, Becker YT, Witkowski P, Pursell K, Kane B, Josephson MA (2015) Use of leflunomide in renal transplant recipients with ganciclovir-resistant/refractory cytomegalovirus infection: a case series from the University of Chicago. Case Rep Nephrol Dial 5:96–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Confavreux C, O’Connor P, Comi G, Freedman MS, Miller AE, Olsson TP, Wolinsky JS, Bagulho T, Delhay JL, Dukovic D, Truffinet P, Kappos L (2014) Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol 13:247–256

    Article  CAS  PubMed  Google Scholar 

  • Couper KN, Blount DG, Riley EM (2008) IL-10: the master regulator of immunity to infection. J Immunol 180:5771–5777

    Article  CAS  PubMed  Google Scholar 

  • Emmer A, Staege MS, Kornhuber ME (2014) The retrovirus/superantigen hypothesis of multiple sclerosis. Cell Mol Neurobiol 34:1087–1096

    Article  CAS  PubMed  Google Scholar 

  • Fantuzzi L, Spadaro F, Purificato C, Cecchetti S, Podo F, Belardelli F, Gessani S, Ramoni C (2008) Phosphatidylcholine-specific phospholipase C activation is required for CCR5-dependent, NF-kB-driven CCL2 secretion elicited in response to HIV-1 gp120 in human primary macrophages. Blood 111:3355–3363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Menendez S, Fernandez-Moran M, Fernandez-Vega I, Perez-Alvarez A, Villafani-Echazu J (2016) Epstein-Barr virus and multiple sclerosis. From evidence to therapeutic strategies. J Neurol Sci 361:213–219

    Article  CAS  PubMed  Google Scholar 

  • Finkelman FD, Holmes J, Katona IM, Urban JF Jr, Beckmann MP, Park LS, Schooley KA, Coffman RL, Mosmann TR, Paul WE (1990) Lymphokine control of in vivo immunoglobulin isotype selection. Annu Rev Immunol 8:303–333

    Article  CAS  PubMed  Google Scholar 

  • Fitzner D, Simons M (2010) Chronic progressive multiple sclerosis—pathogenesis of neurodegeneration and therapeutic strategies. Curr Neuropharmacol 8:305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilli F, Royce DB, Pachner AR (2016). Measuring progressive neurological disability in a mouse model of multiple sclerosis. J Vis Exp.

  • Glass WG, Hickey MJ, Hardison JL, Liu MT, Manning JE, Lane TE (2004) Antibody targeting of the CC chemokine ligand 5 results in diminished leukocyte infiltration into the central nervous system and reduced neurologic disease in a viral model of multiple sclerosis. J Immunol 172:4018–4025

    Article  CAS  PubMed  Google Scholar 

  • Gustavsson L, Skovbjerg S, Lindh M, Westin J, Andersson LM (2015) Low serum levels of CCL5 are associated with longer duration of viral shedding in norovirus infection. J Clin Virol 69:133–137

    Article  CAS  PubMed  Google Scholar 

  • Henao-Martinez AF, Weinberg A, Waldman WJ, Levi ME (2012) Successful treatment of acyclovir-resistant herpes simplex virus type 2 proctitis with leflunomide in an HIV-infected man. J Clin Virol 54:276–278

    Article  PubMed  Google Scholar 

  • Hosking MP, Lane TE (2010) The role of chemokines during viral infection of the CNS. PLoS Pathog 6:e1000937

    Article  PubMed  PubMed Central  Google Scholar 

  • Izquierdo G, Angulo S, Garcia-Moreno JM, Gamero MA, Navarro G, Gata JM, Ruiz-Pena JL, Paramo MD (2002) Intrathecal IgG synthesis: marker of progression in multiple sclerosis patients. Acta Neurol Scand 105:158–163

    Article  CAS  PubMed  Google Scholar 

  • Kasarello K, Cudnoch-Jedrzejewska A, Czlonkowski A, Mirowska-Guzel D (2017) Mechanism of action of three newly registered drugs for multiple sclerosis treatment. Pharmacol Rep 69:702–708

    Article  CAS  PubMed  Google Scholar 

  • Knight DA, Hejmanowski AQ, Dierksheide JE, Williams JW, Chong AS, Waldman WJ (2001) Inhibition of herpes simplex virus type 1 by the experimental immunosuppressive agent leflunomide. Transplantation 71:170–174

    Article  CAS  PubMed  Google Scholar 

  • Lamarche C, Orio J, Collette S, Senecal L, Hebert MJ, Renoult E, Tibbles LA, Delisle JS (2016) BK polyomavirus and the transplanted kidney: immunopathology and therapeutic approaches. Transplantation 100:2276–2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leibovitch EC, Jacobson S (2014) Evidence linking HHV-6 with multiple sclerosis: an update. Curr Opin Virol 9:127–133

    Article  CAS  PubMed  Google Scholar 

  • Li L, Matsumoto M, Seabrook TJ, Cojean C, Brinkman V, Pachner AR (2011) The effect of FTY720 in the Theiler’s virus model of multiple sclerosis. J Neurol Sci 308:41–48

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Hou CC, Cheng CF, Chiu TH, Hsu YH, Sue YM, Chen TH, Hou HH, Chao YC, Cheng TH, Chen CH (2007) Peroxisomal proliferator-activated receptor-alpha protects renal tubular cells from doxorubicin-induced apoptosis. Mol Pharmacol 72:1238–1245

    Article  CAS  PubMed  Google Scholar 

  • Lipton HL (1975) Theiler’s virus infection in mice: an unusual biphasic disease process leading to demyelination. Infect Immun 11:1147–1155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lipton HL, Gonzalez-Scarano F (1978) Central nervous system immunity in mice infected with theiler’s virus. I. Local neutralizing antibody response. J Infect Dis 137:145–151

    Article  CAS  PubMed  Google Scholar 

  • Liu MT, Chen BP, Oertel P, Buchmeier MJ, Hamilton TA, Armstrong DA, Lane TE (2001) The CXC chemokines IP-10 and Mig are essential in host defense following infection with a neurotropic coronavirus. Adv Exp Med Biol 494:323–327

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Shah A, Gangwani MR, Silverstein PS, Fu M, Kumar A (2014) HIV-1 Nef induces CCL5 production in astrocytes through p38-MAPK and PI3K/Akt pathway and utilizes NF-kB, CEBP and AP-1 transcription factors. Sci Rep 4:4450

    Article  PubMed  PubMed Central  Google Scholar 

  • McCarthy DP, Richards MH, Miller SD (2012) Mouse models of multiple sclerosis: experimental autoimmune encephalomyelitis and Theiler’s virus-induced demyelinating disease. Methods Mol Biol 900:381–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller AE, Macdonell R, Comi G, Freedman MS, Kappos L, Maurer M, Olsson TP, Wolinsky JS, Bozzi S, Dive-Pouletty C, O’Connor PW (2014) Teriflunomide reduces relapses with sequelae and relapses leading to hospitalizations: results from the TOWER study. J Neurol 261:1781–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munier-Lehmann H, Lucas-Hourani M, Guillou S, Helynck O, Zanghi G, Noel A, Tangy F, Vidalain PO, Janin YL (2015) Original 2-(3-alkoxy-1H-pyrazol-1-yl)pyrimidine derivatives as inhibitors of human dihydroorotate dehydrogenase (DHODH). J Med Chem 58:860–877

    Article  CAS  PubMed  Google Scholar 

  • Narayan K, Dail D, Li L, Cadavid D, Amrute S, Fitzgerald-Bocarsly P, Pachner AR (2005) The nervous system as ectopic germinal center: CXCL13 and IgG in lyme neuroborreliosis. Ann Neurol 57:813–823

    Article  CAS  PubMed  Google Scholar 

  • O'Connor P, Comi G, Freedman MS, Miller AE, Kappos L, Bouchard JP, Lebrun-Frenay C, Mares J, Benamor M, Thangavelu K, Liang J, Truffinet P, Lawson VJ, Wolinsky JS (2016) Long-term safety and efficacy of teriflunomide: nine-year follow-up of the randomized TEMSO study. Neurology 86:920–930

    Article  PubMed  PubMed Central  Google Scholar 

  • O'Neill LA, Kaltschmidt C (1997) NF-kappa B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci 20:252–258

    Article  PubMed  Google Scholar 

  • Olival GS, Lima BM, Sumita LM, Serafim V, Fink MC, Nali LH, Romano CM, Thomaz RB, Cavenaghi VB, Tilbery CP, Penalva-de-Oliveira AC (2013) Multiple sclerosis and herpesvirus interaction. Arq Neuropsiquiatr 71:727–730

    Article  PubMed  Google Scholar 

  • Pachner AR (2011) Experimental models of multiple sclerosis. Curr Opin Neurol 24:291–299

    Article  PubMed  Google Scholar 

  • Pachner AR, Brady J, Narayan K (2007a) Antibody-secreting cells in the central nervous system in an animal model of MS: phenotype, association with disability, and in vitro production of antibody. J Neuroimmunol 190:112–120

    Article  CAS  PubMed  Google Scholar 

  • Pachner AR, Li L, Gilli F (2015) Chemokine biomarkers in central nervous system tissue and cerebrospinal fluid in the Theiler’s virus model mirror those in multiple sclerosis. Cytokine 76:577–580

    Article  CAS  PubMed  Google Scholar 

  • Pachner AR, Li L, Narayan K (2007b) Intrathecal antibody production in an animal model of multiple sclerosis. J Neuroimmunol 185:57–63

    Article  CAS  PubMed  Google Scholar 

  • Panitch H, Goodin D, Francis G, Chang P, Coyle P, O’Connor P, Li D, Weinshenker B (2005) Benefits of high-dose, high-frequency interferon beta-1a in relapsing-remitting multiple sclerosis are sustained to 16 months: final comparative results of the EVIDENCE trial. J Neurol Sci 239:67–74

    Article  CAS  PubMed  Google Scholar 

  • Peterson JD, Waltenbaugh C, Miller SD (1992) IgG subclass responses to Theiler’s murine encephalomyelitis virus infection and immunization suggest a dominant role for Th1 cells in susceptible mouse strains. Immunology 75:652–658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reiber H (2016) Cerebrospinal fluid data compilation and knowledge-based interpretation of bacterial, viral, parasitic, oncological, chronic inflammatory and demyelinating diseases. Diagnostic patterns not to be missed in neurology and psychiatry. Arq Neuropsiquiatr 74:337–350

    Article  PubMed  Google Scholar 

  • Rodriguez M, Lucchinetti CF, Clark RJ, Yakash TL, Markowitz H, Lennon VA (1988) Immunoglobulins and complement in demyelination induced in mice by Theiler’s virus. J Immunol 140:800–806

    CAS  PubMed  Google Scholar 

  • Shi C, Pamer EG (2011) Monocyte recruitment during infection and inflammation. Nat Rev Immunol 11:762–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strassburger-Krogias K, Ellrichmann G, Krogias C, Altmeyer P, Chan A, Gold R (2014) Fumarate treatment in progressive forms of multiple sclerosis: first results of a single-center observational study. Ther Adv Neurol Disord 7:232–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trottier M, Kallio P, Wang W, Lipton HL (2001) High numbers of viral RNA copies in the central nervous system of mice during persistent infection with Theiler’s virus. J Virol 75:7420–7428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trottier M, Schlitt BP, Kung AY, Lipton HL (2004) Transition from acute to persistent Theiler’s virus infection requires active viral replication that drives proinflammatory cytokine expression and chronic demyelinating disease. J Virol 78:12480–12488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiendl H, Gross CC, Lindner M, Eschborn M, Weisser L, Posevitz-Fejfar A, Schulte-Mecklenbeck A, Van Wijmeersch B, Brette S, Turner TJ, Jagerschmidt A, Bar-Or A, Hupperts R, Klotz L, Group T-DT (2016). T- and B-lymphocyte modulation associated with teri unomide treatment in patients with relapsing-remitting MS: analysis of the Phase 3b Teri-DYNAMIC Study. Annual Meeting of the Consortium of Multiple Sclerosis Centers (CMSC) SC03

Download references

Acknowledgements

This work was supported by research agreements between Sanofi Genzyme and the New Jersey Medical School and Geisel School of Medicine at Dartmouth. The sponsors had no role in the design and conduct of the study, collection, management, analysis, and interpretation of the data, nor in preparation, and review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Gilli.

Ethics declarations

All animal work utilized protocols reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) at UMDNJ-New Jersey Medical School and at Dartmouth College.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilli, F., Li, L., Royce, D.B. et al. Treatment of Theiler’s virus-induced demyelinating disease with teriflunomide. J. Neurovirol. 23, 825–838 (2017). https://doi.org/10.1007/s13365-017-0570-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13365-017-0570-8

Keywords

Navigation