Journal of NeuroVirology

, Volume 19, Issue 1, pp 75–81 | Cite as

Varicella zoster virus infection of highly pure terminally differentiated human neurons

  • Xiaoli Yu
  • Scott Seitz
  • Tiffany Pointon
  • Jacqueline L. Bowlin
  • Randall J. Cohrs
  • Stipan Jonjić
  • Jürgen Haas
  • Mary Wellish
  • Don Gilden
Article

Abstract

In vitro analyses of varicella zoster virus (VZV) reactivation from latency in human ganglia have been hampered by the inability to isolate virus by explantation or cocultivation techniques. Furthermore, attempts to study interaction of VZV with neurons in experimentally infected ganglion cells in vitro have been impaired by the presence of nonneuronal cells, which become productively infected and destroy the cultures. We have developed an in vitro model of VZV infection in which highly pure (>95 %) terminally differentiated human neurons derived from pluripotent stem cells were infected with VZV. At 2 weeks post-infection, infected neurons appeared healthy compared to VZV-infected human fetal lung fibroblasts (HFLs), which developed a cytopathic effect (CPE) within 1 week. Tissue culture medium from VZV-infected neurons did not produce a CPE in uninfected HFLs and did not contain PCR-amplifiable VZV DNA, but cocultivation of infected neurons with uninfected HFLs did produce a CPE. The nonproductively infected neurons contained multiple regions of the VZV genome, as well as transcripts and proteins corresponding to VZV immediate-early, early, and late genes. No markers of the apoptotic caspase cascade were detected in healthy-appearing VZV-infected neurons. VZV infection of highly pure terminally differentiated human neurons provides a unique in vitro system to study the VZV-neuronal relationship and the potential to investigate mechanisms of VZV reactivation.

Keywords

Varicella zoster virus Human neurons Nonproductive infection 

References

  1. Baiker A, Fabel K, Cozzio A, Zerboni L, Fabel K, Sommer M, Uchida N, He D, Weissman I, Arvin AM (2004) Varicella-zoster virus infection of human neural cells in vivo. Proc Natl Acad Sci USA 101:10792–10797. doi:10.1073/pnas.0404016101 PubMedCrossRefGoogle Scholar
  2. Christensen J, Steain M, Slobedman B, Abendroth A (2011) Differentiated neuroblastoma cells provide a highly efficient model for studies of productive varicella-zoster virus infection of neuronal cells. J Virol 85:8436–8442PubMedCrossRefGoogle Scholar
  3. Cohrs RJ, Wischer J, Essman C, Gilden DH (2002) Characterization of varicella-zoster virus gene 21 and 29 proteins in infected cells. J Virol 76:7228–7238. doi:10.1128/JVI.76.14.7228-7238.2002 Google Scholar
  4. Dukhovny A, Sloutskin A, Markus A, Yee MB, Kinchington PR, Goldstein RS (2012) Varicella-zoster virus infects human embryonic stem cell-derived neurons and neurospheres but not pluripotent embryonic stem cells or early progenitors. J Virol 86:3211–3218PubMedCrossRefGoogle Scholar
  5. Hood C, Cunningham AL, Slobedman B, Boadle RA, Abendroth A (2003) Varicella-zoster virus-infected human sensory neurons are resistant to apoptosis, yet human foreskin fibroblasts are susceptible: evidence for a cell-type-specific apoptotic response. J Virol 77:12852–12864. doi:10.1128/JVI.77.23.12852-12864 PubMedCrossRefGoogle Scholar
  6. Gilden DH, Cohrs RJ, Mahalingam R (2003) Clinical and molecular pathogenesis of varicella virus infection. Viral Immunol 16:243–258PubMedCrossRefGoogle Scholar
  7. Gilden D, Mahalingam R, Nagel MA, Pugazhenthi S, Cohrs RJ (2011) Review: the neurobiology of varicella zoster virus infection. Neuropathol Appl Neurobiol 37:441–463. doi:10.1111/j.1365-2990.2011.01167 PubMedCrossRefGoogle Scholar
  8. Gowrishankar K, Slobedman B, Cunningham AL, Miranda-Saksena M, Boadle RA, Abendroth A (2007) Productive varicella-zoster virus infection of cultured intact human ganglia. J Virol 81:6752–6756. doi:10.1128/JVI.02793-06 PubMedCrossRefGoogle Scholar
  9. Mahalingam R, Wellish M, Cohrs RJ, Debrus S, Piette J, Rentier B, Gilden DH (1996) Expression of protein encoded by varicella-zoster virus open reading frame 63 in latently infected human ganglionic neurons. Proc Natl Acad Sci USA 93:2122–2124Google Scholar
  10. Markus A, Grigoryan S, Sloutskin A, Yee MB, Zhu H, Yang IH, Thakor NV, Sarid R, Kinchington PR, Goldstein RS (2011) Varicella-zoster virus (VZV) infection of neurons derived from human embryonic stem cells: direct demonstration of axonal infection, transport of VZV, and productive neuronal infection. J Virol 85:6220–6233. doi:10.1128/JVI.02396-10 PubMedCrossRefGoogle Scholar
  11. Padgett BL, Walker DL, ZuRhein GM, Eckroade RJ, Dessel BH (1971) Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy. Lancet 1:1257–1260PubMedCrossRefGoogle Scholar
  12. Payne FE, Baublis JV, Itabashi HH (1969) Isolation of measles virus from cell cultures of brain from a patient with subacute sclerosing panencephalitis. N Engl J Med 281:585–589PubMedCrossRefGoogle Scholar
  13. Plotkin SA, Stein S, Snyder M, Immesoete P (1977) Attempts to recover varicella virus from ganglia. Ann Neurol 2:249. doi:10.1002/ana.410020313 PubMedCrossRefGoogle Scholar
  14. Pugazhenthi S, Nair S, Velmurugan K, Liang Q, Mahalingam R, Cohrs RJ, Nagel MA, Gilden D (2011) VZV infection of differentiated human neural stem cells. J Virol 85:6678–6686. doi:10.1128/JVI.00445-11 PubMedCrossRefGoogle Scholar
  15. Wigdahl B, Rong BL, Kinney-Thomas E (1986) Varicella-zoster virus infection of human sensory neurons. Virology 152:384–399PubMedCrossRefGoogle Scholar
  16. Zerboni L, Ku CC, Jones CD, Zehnder JL, Arvin AM (2005) Varicella-zoster virus infection of human dorsal root ganglia in vivo. Proc Natl Acad Sci USA 102:6490–6495. doi:10.1073/pnas.0501045102 PubMedCrossRefGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2012

Authors and Affiliations

  • Xiaoli Yu
    • 1
  • Scott Seitz
    • 1
  • Tiffany Pointon
    • 1
  • Jacqueline L. Bowlin
    • 1
  • Randall J. Cohrs
    • 1
  • Stipan Jonjić
    • 3
  • Jürgen Haas
    • 4
  • Mary Wellish
    • 1
  • Don Gilden
    • 1
    • 2
  1. 1.Department of NeurologyUniversity of Colorado Denver School of MedicineAuroraUSA
  2. 2.Department of MicrobiologyUniversity of Colorado Denver School of MedicineAuroraUSA
  3. 3.Department of Histology and EmbryologyUniversity of RijekaRijekaCroatia
  4. 4.Division of Pathway MedicineUniversity of EdinburghEdinburghUK

Personalised recommendations