Skip to main content

Advertisement

Log in

Modeling the response of an endangered flagship predator to climate change in Iran

  • Original Paper
  • Published:
Mammal Research Aims and scope Submit manuscript

Abstract

Land use changes in suitable areas, habitat loss, and fragmentation are likely to be the most important consequences of climate change for wildlife populations. Yet, little is known about the response of large carnivores to climate change, globally and regionally. In this study, we utilized the ensemble modeling based on six species distribution models in order to predict the spatial vulnerability of the globally endangered Persian leopard (Panthera pardus saxicolor) to climate change in Chaharmahal and Bakhtiari Province, a semi-arid region in Iran. We showed that about 12.12 to 22.38% of leopard habitats in the area may be lost by 2050 due to climate change under four representative concentration pathways (RCPs) within the framework of two general circulation models (GCMs). In contrast, 1.87 to 13.01% of currently unsuitable habitats can become suitable with climate change. Overall, a considerable portion of the leopard range will remain intact under global warming, but still habitat loss to climate change will vary from 5.89 to 14.59%. Thus, large-scale but locally focused and flexible conservation strategies should be applied in intact and sensitive areas so that to prevent the intensification of anthropogenic threats such as overgrazing and forest degradation from collection of firewood, charcoal, and medicinal plants under changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbasian M, Moghim S, Abrishamchi A (2018) Performance of the general circulation models in simulating temperature and precipitation over Iran. Theor Appl Climatol 1–19. https://doi.org/10.1007/s00704-018-2456-y

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492

    Article  PubMed  PubMed Central  Google Scholar 

  • Aryal A, Shrestha UB, Ji W, Ale SB, Shrestha S, Ingty T, Maraseni T, Cockfield G, Raubenheimer D (2016) Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya. Ecol Evol 6:4065–4075

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashrafzadeh MR, Nazarian AR (2018) Habitat suitability modelling for the Caspian snowcock (Tetraogallus caspius) as a typical high-montane species. Iran J Nat Environ 70:745–756 (in Persian)

    Google Scholar 

  • Azizi G, Roushani M (2008) Using Mann-Kendall test to recognize of climate change in Caspian Sea southern coasts. Geo Res Quar 40:13–28 (in Persian)

    Google Scholar 

  • Babaeian I, Modirian R, Karimian M, Zarghami M (2015) Simulation of climate change in Iran during 2071–2100 using PRECIS regional climate modelling system. Desert 20:123–134

    Google Scholar 

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Meth Ecol Evol 3:327–338

    Article  Google Scholar 

  • Breitenmoser U, Shavgulidze I, Askerov E, Khorozyan I, Farhadinia MS, Can E, Bilgin C, Zazanashvili N (2010) Leopard conservation in the Caucasus. IUCN Cat News 53:39–40

    Google Scholar 

  • Carroll C (2007) Interacting effects of climate change, landscape conversion, and harvest on carnivore populations at the range margin: marten and lynx in the northern Appalachians. Conserv Biol 21:1092–1104

    Article  PubMed  Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1029–1136

    Google Scholar 

  • Dunwiddie PW, Hall SA, Ingraham MW, Bakker JD, Nelson KS, Fuller R, Gray E (2009) Rethinking conservation practice in light of climate change. Ecol Restor 27:320–329

    Article  Google Scholar 

  • Early R, Sax DF (2014) Climatic niche shifts between species' native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Glob Ecol Biogeogr 23:1356–1365

    Article  Google Scholar 

  • Ebrahimi A, Farashi A, Rashki A (2017) Habitat suitability of Persian leopard (Panthera pardus saxicolor) in Iran in future. Environ Earth Sci 76:697

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  • Eskildsen A, Roux PC, Heikkinen RK, Høye TT, Kissling WD, Pöyry J, Wisz MS, Luoto M (2013) Testing species distribution models across space and time: high latitude butterflies and recent warming. Glob Ecol Biogeogr 22:1293–1303

    Article  Google Scholar 

  • Farashi A, Shariati M, Hosseini M (2017) Identifying biodiversity hotspots for threatened mammal species in Iran. Mamm Biol 87:71–88

    Article  Google Scholar 

  • Farhadinia M, Nezami B, Mahdavi A, Hatami K (2007) Photos of Persian leopard in Alborz Mountains, Iran. IUCN Cat News 46:34–35

    Google Scholar 

  • Farhadinia MS, Moqanaki EM, Hosseini-Zavarei F (2014) Predator–prey relationships in a middle Asian montane steppe: Persian leopard versus urial wild sheep in Northeastern Iran. Eur J Wildl Res 60:341–349

    Article  Google Scholar 

  • Farhadinia MS, Ahmadi M, Sharbafi E, Khosravi S, Alinezhad H, Macdonald DW (2015) Leveraging trans-boundary conservation partnerships: persistence of Persian leopard (Panthera pardus saxicolor) in the Iranian Caucasus. Biol Conserv 191:770–778

    Article  Google Scholar 

  • Felix M, Gheewala SH (2011) A review of biomass energy dependency in Tanzania. Energy Procedia 9:338–343

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Fischer J, Abson DJ, Butsic V, Chappell MJ, Ekroos J, Hanspach J, Kuemmerle T, Smith HG, von Wehrden H (2014) Land sparing versus land sharing: moving forward. Conserv Lett 7:149–157

    Article  Google Scholar 

  • Forrest JL, Wikramanayake E, Shrestha R, Areendran G, Gyeltshen K, Maheshwari A, Mazumdar S, Naidoo R, Thapa GJ, Thapa K (2012) Conservation and climate change: assessing the vulnerability of snow leopard habitat to treeline shift in the Himalaya. Biol Conserv 150:129–135

    Article  Google Scholar 

  • Fuentes MM, Pike DA, Dimatteo A, Wallace BP (2013) Resilience of marine turtle regional management units to climate change. Glob Chang Biol 19:1399–1406

    Article  PubMed  Google Scholar 

  • Gavashelishvili A, Lukarevskiy V (2008) Modelling the habitat requirements of leopard Panthera pardus in west and central Asia. J Appl Ecol 45:579–588

    Article  Google Scholar 

  • Ghoddousi A, Hamidi AK, Ghadirian T, Ashayeri D, Khorozyan I (2010) The status of the endangered Persian leopard Panthera pardus saxicolor in Bamu National Park, Iran. Oryx 44:551–557

    Article  Google Scholar 

  • Habibi M (2016) Investigating the impact of climate changes on qualitative and quantitative growth of oak trees (case study: central Zagros). Open J Ecol 6:358–366

    Article  Google Scholar 

  • Hällfors MH, Vaara EM, Hyvärinen M, Oksanen M, Schulman LE, Siipi H, Lehvävirta S (2014) Coming to terms with the concept of moving species threatened by climate change—a systematic review of the terminology and definitions. PLoS One 9:e102979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamidi AK, Ghoddousi A, Soufi M, Ghadirian T, Jowkar H, Ashayeri S (2014) Camera trap study of Persian leopard in Golestan National Park, Iran. IUCN Cat News 60:12–14

    Google Scholar 

  • Hannah L, Midgley GF, Lovejoy T, Bond WJ, Bush MLJC, Lovett JC, Scott D, Woodward FI (2002a) Conservation of biodiversity in a changing climate. Conserv Biol 16:264–268

    Article  Google Scholar 

  • Hannah L, Midgley GF, Millar D (2002b) Climate change-integrated conservation strategies. Glob Ecol Biogeogr 11:485–495

    Article  Google Scholar 

  • Hebblewhite M, Miquelle DG, Murzin AA, Aramilev VV, Pikunov DG (2011) Predicting potential habitat and population size for reintroduction of the Far Eastern leopards in the Russian Far East. Biol Conserv 144:2403–2413

    Article  Google Scholar 

  • Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142:14–32

    Article  Google Scholar 

  • Hulme PE (2005) Adapting to climate change: is there scope for ecological management in the face of a global threat? J Appl Ecol 42:784–794

    Article  Google Scholar 

  • IFRWMO (2014) Iranian forests, range and watershed management organization national land use/land cover map. Forest, Range and Watershed Management Organization of Iran, Tehran. Available at http://frw.org.ir/00/En/. Accessed 20 Jul 2014

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 3–29

    Google Scholar 

  • Jaafari A, Mafi Gholami D, Zenner EK (2017) A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran. Ecol Inform 39:32–44

    Article  Google Scholar 

  • Jowkar H, Ostrowski S, Tahbaz M, Zahler P (2016) The conservation of biodiversity in Iran: threats, challenges and hopes. Iran Stud 49:1065–1077

    Article  Google Scholar 

  • Karami M, Ghadirian T, Faizolahi K (2012) The atlas of mammals of Iran. Department of Environment, Tehran

  • Khorozyan I (2003) Habitat preferences by the Persian leopard (Panthera pardus saxicolor Pocock, 1927) in Armenia. Zool Middle East 30:25–36

    Article  Google Scholar 

  • Khorozyan I, Malkhasyan A, Asmaryan S (2005) The Persian leopard prowls its way to survival. Endanger Species Update 22(2):51

  • Khorozyan IG, Malkhasyan AG, Asmaryan SG, Abramov AV (2010) Using geographical mapping and occupancy modeling to study the distribution of the critically endangered leopard (Panthera pardus) population in Armenia. In: Cushman SA, Huettmann F (eds) Spatial complexity, informatics, and wildlife conservation. Springer, Tokyo, pp 331–347

    Chapter  Google Scholar 

  • Khorozyan I, Soofi M, Hamidi AK, Ghoddousi A, Waltert M (2015) Dissatisfaction with veterinary services is associated with leopard (Panthera pardus) predation on domestic animals. PLoS One 10:e0129221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khorozyan I, Soofi M, Soufi M, Hamidi AK, Ghoddousi A, Waltert M (2017) Effects of shepherds and dogs on livestock depredation by leopards (Panthera pardus) in north-eastern Iran. PeerJ 5:e3049

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiabi BH, Dareshouri BF, Ghaemi RA, Jahanshahi M (2002) Population status of the Persian leopard (Panthera pardus saxicolor Pocock, 1927) in Iran. Zool Middle East 26(1):41–47

  • Kuhn M (2008) The caret package. J Stat Softw 28:1–26

    Article  Google Scholar 

  • Lewis JS, Farnsworth ML, Burdett CL, Theobald DM, Gray M, Miller RS (2017) Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci Rep 7:44152

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovejoy TE, Hannah L (2005) Climate change and biodiversity. Yale University Press, New Haven

    Google Scholar 

  • Maiorano L, Falcucci A, Zimmermann NE, Psomas A, Pottier J, Baisero D, Rondinini C, Guisan A, Boitani L (2011) The future of terrestrial mammals in the Mediterranean basin under climate change. Philos Trans R Soc B 366:2681–2692

    Article  Google Scholar 

  • Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence–absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931

    Article  Google Scholar 

  • Marchese C (2015) Biodiversity hotspots: a shortcut for a more complicated concept. Glob Ecol Conserv 3:297–309

    Article  Google Scholar 

  • Marmion M, Luoto M, Heikkinen RK, Thuiller W (2009) The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecol Model 220:3512–3520

    Article  Google Scholar 

  • Mawdsley JR, O’Malley R, Ojima DS (2009) A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv Biol 23:1080–1089

    Article  PubMed  Google Scholar 

  • McArt SH, Spalinger DE, Collins WB, Schoen ER, Stevenson T, Burcho M (2009) Summer dietary nitrogen availability as a potential bottom-up constraint on moose in south-central Alaska. Ecology 90:1400–1411

    Article  PubMed  Google Scholar 

  • Mishra C, Prins HH, Van Wieren SE (2003) Diversity, risk mediation, and change in a Trans-Himalayan agropastoral system. Hum Ecol 31:595–609

    Article  Google Scholar 

  • Naderi M, Farashi A, Erdi MA (2018) Persian leopard’s (Panthera pardus saxicolor) unnatural mortality factors analysis in Iran. PLoS One 13:e0195387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rahimzadeh F, Fattahi E, Hoseini-Dastak SE (2005) Evaluation of variability of climate with applying statistical methods in Iran. J Iran Water Resour Res 1:61–73 (in Persian)

    Google Scholar 

  • Ramírez-Villegas J, Bueno-Cabrera A (2009) Working with climate data and niche modeling: creation of bioclimatic variables. International Center for Tropical Agriculture (CIAT), Cali, Columbia

  • Rawat G (1998) Temperate and alpine grasslands of the Himalaya: ecology and conservation. Parks 8:27–36

    Google Scholar 

  • Renner IW, Warton DI (2013) Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics 69:274–281

    Article  PubMed  Google Scholar 

  • Riordan P, Cushman SA, Mallon D, Shi K, Hughes J (2016) Predicting global population connectivity and targeting conservation action for snow leopard across its range. Ecography 39:419–426

    Article  Google Scholar 

  • Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G (2002) The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience 52:891–904

    Article  Google Scholar 

  • Sanei A, Mousavi M, Kiabi BH, Masoud MR, Mardi EG, Mohamadi H, Shakiba M, Zehi AB, Teimouri M, Raeesi T (2016) Status assessment of the Persian leopard in Iran. IUCN Cat News, Special Issue 10:43–50

    Google Scholar 

  • Sangoony H, Vahabi M, Tarkesh M, Soltani S (2016) Range shift of Bromus tomentellus Boiss. as a reaction to climate change in Central Zagros, Iran. Appl Ecol Environ Res 14:85–100

    Article  Google Scholar 

  • Senay SD, Worner SP, Ikeda T (2013) Novel three-step pseudo-absence selection technique for improved species distribution modelling. PLoS One 8:e71218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein AB, Hayssen V (2013) Panthera pardus (Carnivora: Felidae). Mamm Species 45:30–48

    Article  Google Scholar 

  • Stein AB, Athreya V, Gerngross P, Balme G, Henschel P, Karanth U, Miquelle D, Rostro-Garcia S, Kamler JF, Laguardia A, Khorozyan I, Ghoddousi A (2016) Panthera pardus. (errata version published in 2016) The IUCN red list of threatened species 2016: e.T15954A102421779. Accessed 20 Feb 2017

  • Sugden AM (2017) Consequences of shifting species distributions. Science 355:1386–1388

    PubMed  Google Scholar 

  • Sunquist ME, Sunquist FC (2001) Changing landscapes: consequences for carnivores. In: Gittleman JL, Funk SM, MacDonald DW, Wayne RK (eds) Carnivore conservation. Conservation biology 5. Cambridge University Press, Cambridge, pp 399–418

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BF, De Siqueira MF, Grainger A, Hannah L, Hughes L (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  • Thuiller W, Georges D, Engler R, Breiner F, Georges MD, Thuiller CW (2016) Package ‘biomod2’. https://cran.r-project.org/package=biomod2

  • White KS, Gregovich DP, Levi T (2018) Projecting the future of an alpine ungulate under climate change scenarios. Glob Chang Biol 24:1136–1149

    Article  PubMed  Google Scholar 

  • Williams L, Zazanashvili N, Sanadiradze G, Kandaurov A (2006) An ecoregional conservation plan for the Caucasus. WWF Caucasus Programme Office, Tbilisi

  • Yangzong C (2006) The household responsibility contract system and the question of grassland protection. A case study from the Chang Tang, northwest Tibet Autonomous Region. MSc. Thesis, University of Tromsø, Tromsø, Norway

  • Zanin M, Palomares F, Brito D (2015) What we (don’t) know about the effects of habitat loss and fragmentation on felids. Oryx 49:96–106

    Article  Google Scholar 

  • Zazanashvili N, Morschel F, Askerov E, Manvelyan K, Krever V, Farvar T, Kalem S (2007) Conservation of the leopard in the Caucasus. IUCN Cat News 2:4–8

    Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Meth Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Ali Reza Nazarian (Chaharmahal and Bakhtiari Provincial Office of Department of Environment, Shahrekord, Iran) for his help in data collection. We thank anonymous reviewers for thoughtful comments and ideas which improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Ashrafzadeh.

Additional information

Communicated by: Krzysztof Schmidt

Electronic supplementary material

Table S1

(DOCX 13 kb)

Table S2

(DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashrafzadeh, M.R., Naghipour, A.A., Haidarian, M. et al. Modeling the response of an endangered flagship predator to climate change in Iran. Mamm Res 64, 39–51 (2019). https://doi.org/10.1007/s13364-018-0384-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13364-018-0384-y

Keywords

Navigation