Skip to main content
Log in

Inferring the origin and genetic diversity of the introduced wild boar (Sus scrofa) populations in Argentina: an approach from mitochondrial markers

  • Original Paper
  • Published:
Mammal Research Aims and scope Submit manuscript

Abstract

The Eurasian wild boar (Sus scrofa Linnaeus, 1758) was introduced into Argentina at the beginning of the twentieth century when individuals from Europe were taken to La Pampa province for hunting purposes. Starting from there, a dispersal process began due to the invasive characteristics of the species and to human-mediated translocations. The main objective of this study was to characterize for the first time, the phylogenetic relationships among wild boars from Argentina with those from Uruguay, Europe, Asia, and the Near East, along with diverse domestic pig breeds in order to corroborate the historical information about the origin of the local populations. To this end, we used mitochondrial Control Region and Cytochrome b sequences from sampled Argentinian wild boars and retrieved from GenBank. The results showed that the majority of the Argentinian wild boar populations descend from European lineages, in particular of the E1 clade, according to the historical records. Remarkably, the population of El Palmar National Park had Asian origin that could be attributed to hybridization with local domestic pigs or to unrecorded translocations. Finally, genetic diversity in Argentinian populations was lower than in Europe and Uruguay meaning that wild boar in Argentina is still under the influence of founder effect and has experienced minor genetic introgression from domestic pigs, representing in this sense a reservoir of the original wild boar genetic variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexandri P, Triantafyllidis A, Papakostas S, Chatzinikos E, Platis P, Papageorgiou N, Larson G, Abatzopoulos TH, Triantaphyllidis C (2012) The Balkans and the colonization of Europe: the post-glacial range expansion of the wild boar, Sus scrofa. J Biogeogr 39(4):713–723

    Article  Google Scholar 

  • Alves E, Ovilo C, Rodriguez MC, Silio L (2003) Mitochondrial DNA sequence variation and phylogenetic relationships among Iberian pigs and other domestic and wild pig populations. Anim Genet 34(5):319–324

    Article  PubMed  CAS  Google Scholar 

  • Amieva EO (1993) El Parque Luro; su origen, su historia, su presente. Fondo Editorial Pampeano, Santa Rosa

    Google Scholar 

  • Aravena P, Skewes O, Gouin N (2015) Mitochondrial DNA diversity of feral pigs from Karukinka Natural Park, Tierra del Fuego Island, Chile. Genet Mol Res 14(2):4245–4257

    Article  PubMed  CAS  Google Scholar 

  • Bandelt HJ, Foster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16(1):37–48

    Article  PubMed  CAS  Google Scholar 

  • Biedma JM (2003) Crónica histórica del Lago Nahuel Huapi. Caleuche, Buenos Aires

    Google Scholar 

  • Carpinetti BN, Castresana G, Rojas P, Grant J, Marcos A, Monterubbianesi M, Borrás P (2014) Vigilancia epidemiológica en poblaciones de cerdos silvestres (Sus scrofa). Implicancias para la salud pública, la producción animal y la conservación de la biodiversidad. SNS 5:67–76

    Google Scholar 

  • Crosby AW (1986) Ecological imperialism: the biological expansion of Europe, 900–1900. Cambridge University Press, New York

    Google Scholar 

  • Daciuk J (1978) IV Estado actual de las especies de mamíferos introducidos en la Subregión Araucana (Rep. Argentina) y grado de coacción ejercido en algunos ecosistemas sur cordilleranos. An Parq Nac 14:105–130

    Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29(8):1969–1973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • García G, Vergara J, Lombardi R (2011) Genetic characterization and phylogeography of the wild boar Sus scrofa introduced into Uruguay. Genet Mol Biol 34(2):329–337

    Article  PubMed  PubMed Central  Google Scholar 

  • Giuffra E, Kijas JMH, Amarger V, Carlborg Ö, Jeon JT, Andersson L (2000) The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154(4):1785–1791

    PubMed  PubMed Central  CAS  Google Scholar 

  • Godoy JC (1963) Fauna Silvestre. Evaluación de los recursos naturales de Argentina. Tomo VIII. Fauna Silvestre Vol I. Consejo Federal de Inversiones, Buenos Aires

    Google Scholar 

  • Grossi SF, Lui JF, García JE, Meirelles FV (2006) Genetic diversity in wild (Sus scrofa scrofa) and domestic (Sus scrofa domestica) pigs and their hybrids based on polymorphism of a fragment of the D-loop region in the mitochondrial DNA. Genet Mol Res 5(4):564–568

    PubMed  CAS  Google Scholar 

  • Guadagnin DL, Carvalho Perello LF, Gomes de Moura R (2014) Distribuiçâo atual do javali (Sus scrofa) no Rio Grande do Sul, seus impactos na produçâo rural e nos ambientes naturais. Dissertation. Federaçâo Gaúcha de Caça e Tiro

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  PubMed  CAS  Google Scholar 

  • Hudson WH (1893) Días de ocio en la Patagonia. Continente, Buenos Aires

    Google Scholar 

  • Hudson WH (1918) Allá lejos y hace tiempo. Peuser, Buenos Aires

    Google Scholar 

  • Kijas JMH, Andersson L (2001) A phylogenetic study of the origin of the domestic pig estimated from the near-complete mtDNA genome. J Mol Evol 52(3):302–308

    Article  PubMed  CAS  Google Scholar 

  • Kim KI, Lee JH, Li K, Zhang YP, Lee SS, Gongora J, Moran C (2002) Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-loop sequence polymorphism. Anim Genet 33(1):19–25

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kusza S, Podgórski T, Scandura M, Borowik T, Jávor A, Sidorovich VE, Bunevich AN, Kolesnikov M, Jędrzejewska B (2014) Contemporary genetic structure, Phylogeography and past demographic processes of wild boar Sus scrofa population in central and Eastern Europe. PLoS One 9(3):e91401. https://doi.org/10.1371/journal.pone.0091401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E, Robins J, Lowden S, Finlayson H, Brand T, Willerslev E, Rowley-Conwy P, Andersson L, Cooper A (2005) Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307(5715):1618–1621

    Article  PubMed  CAS  Google Scholar 

  • Larson G, Albarella U, Dobney K, Rowley-Conwy P, Schibler J, Tresset A, Vigne J-D, Edwards CJ, Schlumbaum A, Dinu A, Bălăçsescu A, Dolman G, Tagliacozzo A, Manaseryan N, Miracle P, Van Wijngaarden-Bakker L, Masseti M, Bradley DG, Cooper A (2007) Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. PNAS 104(39):15276–15281

    Article  PubMed  PubMed Central  Google Scholar 

  • Leigh JW, Bryant D (2015) Popart: full-feature software for haplotype network construction. Methods Ecol Evol 6(9):1110–1116

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Lombardi R, Geymonat G, Berrini R (2015) El jabalí en el Uruguay. Problema, desafío y oportunidad. Forestal Atlántico Sur, Montevideo

  • Molins JW (1930) Industrias rurales: Uruguay, 1830–1930: Imprenta Latina, Montevideo

  • Montiel-Sosa JF, Ruiz-Pesini E, Montoya J, Roncalés P, Lopéz-Pérez MJ, Pérez-Martos A (2000) Direct and highly species-specific detection of pork meat and fat in meat products by PCR amplification of mitochondrial DNA. J Agric Food Chem 48:2829–2832

    Article  PubMed  CAS  Google Scholar 

  • Morales EB (1917) Lagos, selvas y cascadas. Descripciones geográficas. Peuser, Buenos Aires

  • Navas JR (1987) Los vertebrados exóticos introducidos en Argentina. Rev. Mus. Argentino Cienc. Nat., n.s Tomo XIV (2): 7–38

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York 512pp

    Google Scholar 

  • Novillo A, Ojeda RA (2008) The exotic mammals of Argentina. Biol Invasions 10(8):1333–1344

    Article  Google Scholar 

  • Oliver WLR, Brisbin IL (1993) Introduced and feral pigs: problems, policy and priorities. In: Oliver WLR (ed) Status survey and conservation action plan: pigs, peccaries and hippos. IUCN, gland, pp 179–191

    Google Scholar 

  • Oliver W, Leus K (2008) Sus scrofa. The IUCN Red List of Threatened Species 2008: e.T41775A10559847. https://doi.org/10.2305/IUCN.UK.2008.RLTS.T41775A10559847.en

  • Ramírez O, Ojeda A, Tomas A, Gallardo D, Huang LS, Folch JM, Clop A, Sanchez A, Badaoui B, Hanotte O, Galoman-Omitogun O, Makuza SM, Soto H, Cadillo J, Kelly L, Cho IC, Yeghoyan S, Perez-Enciso M, Amills M (2009) Integrating Y-chromosome, mitochondrial, and autosomal data to analyze the origin of pig breeds. Mol Biol Evol 26(9):2061–2072

    Article  PubMed  CAS  Google Scholar 

  • Read AF, Harvey PH (1989) Life history differences among the eutherian radiations. J Zool 219(2):329–353

    Article  Google Scholar 

  • Sambrook J, Russel DW (2001) Rapid isolation of yeast DNA. In: Sambrook J, Russel DW (eds) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp 631–632

    Google Scholar 

  • Scandura M, Iacolina L, Crestanello B, Pecchioli E, Di Benedetto MF, Russo V, Davoli R, Apollonio M, Bertorelle G (2008) Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: are the effects of the last glaciation still detectable? Mol Ecol 17(7):1745–1762

    Article  PubMed  CAS  Google Scholar 

  • Scandura M, Iacolina L, Apollonio M (2011) Genetic diversity in the European wild boar Sus scrofa: phylogeography, population structure and wild x domestic hybridization. Mammal Rev 41(2):125–137

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Asch B, Pereira F, Santos LS, Carneiro J, Santos N, Amorim A (2012) Mitochondrial lineages reveal intense gene flow between Iberian wild boars and south Iberian pig breeds. Anim Genet 43(1):35–41

    Article  PubMed  CAS  Google Scholar 

  • Vilaça ST, Biosa D, Zachos F, Iacolina L, Kirschning J, Alves PC, Paule L, Gortazar C, Mamuris Z, Jedrzejewska B, Borowik T, Sidorovich VE, Kusak J, Costa S, Schley L, Hartl GB, Apollonio M, Bertorelle G, Scandura M (2014) Mitochondrial phylogeography of the European wild boar: the effect of climate on genetic diversity and spatial lineage sorting across Europe. J Biogeogr 41(5):987–998

    Article  Google Scholar 

  • Yu G, Xiang H, Wang J, Zhao X (2013) The phylogenetic status of typical Chinese native pigs: analyzed by Asian and European pig mitochondrial genome sequences. J Anim Sci biotechnol 4(1):9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank El Palmar National Park rangers, Guillermo Lier, Eduardo Jones, and Pablo Giorgis. We also express our gratitude to Fabian Tittarelli, Lautaro Córdoba, Lucía Curti, Gabriel Castresana, Pablo Rojas, Marina Winter, and Hernán Amendola for their help in collecting wild boar samples and to Alejandra Canalis for the English revisions. Universidad Nacional del Noroeste de la provincia de Buenos Aires (UNNOBA), Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CICPBA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) provided financial support for the present research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mara I. Sagua or Mariano L. Merino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by: Karol Zub

Electronic supplementary material

ESM 1

(XLSX 45.1 kb)

ESM 2

(XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagua, M.I., Figueroa, C.E., Acosta, D.B. et al. Inferring the origin and genetic diversity of the introduced wild boar (Sus scrofa) populations in Argentina: an approach from mitochondrial markers. Mamm Res 63, 467–476 (2018). https://doi.org/10.1007/s13364-018-0380-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13364-018-0380-2

Keywords

Navigation