Advertisement

Mammal Research

, Volume 63, Issue 3, pp 369–378 | Cite as

Genetic diversity of MHC class II DRB alleles in the continental and Japanese populations of the sable Martes zibellina (Mustelidae, Carnivora, Mammalia)

  • Yoshinori Nishita
  • Alexei V. Abramov
  • Takahiro Murakami
  • Ryuichi Masuda
Original Paper

Abstract

The sable (Martes zibellina) is a medium-sized mustelid inhabiting forest environments in Siberia, northern China, the Korean Peninsula, and Hokkaido Island, Japan. To further understand the molecular evolution of the major histocompatibility complex (MHC), we sequenced part of exon 2 in MHC class II DRB genes, including codons encoding the antigen binding site, from 33 individuals from continental Eurasia and Japan. We identified 16 MHC class II DRB alleles (Mazi-DRBs), some of which were geographically restricted and others broadly distributed, and eight putative pseudogenes. A single-breakpoint recombination analysis detected a recombination site in the middle of exon 2. A mixed effects model of evolution analysis identified five amino acid sites presumably under positive selection. These sites were all located in the region 3′ to the recombination site, suggesting that positive selection and recombination could be committed to the diversity of the M. zibellina DRB gene. In a Bayesian phylogenetic tree, all Mazi-DRBs and the presumed pseudogenes grouped within a Mustelidae clade. The Mazi-DRBs showed trans-species polymorphism, with some alleles most closely related to alleles from other mustelid species. This result suggests that the sable DRBs have evolved under long-lasting balancing selection.

Keywords

Balancing selection DRB gene Major histocompatibility complex Molecular evolution Trans-species polymorphism Martes zibellina 

Notes

Acknowledgements

We thank Dr. Hisashi Yanagawa (Obihiro University of Agriculture and Veterinary Medicine), Dr. Yasushi Masuda (Shiretoko Museum), and Ms. Tatiana Bulyonkova (Novosibirsk) for providing the specimens and Dr. Matthew H. Dick for commenting on and editing the manuscript. This study was supported in part by a Joint Research Project Grant from the Japan Society for the Promotion of Science (JSPS) and the Russian Foundation for the Basic Research (RFBR 16-54-50004), and a Joint Research Program Grant from the Japan Arctic Research Network Centre.

References

  1. Abbas AK, Lichtman AHH (2009) Basic immunology: functions and disorders of the immune system, 3rd edn. Saunders, PhiladelphiaGoogle Scholar
  2. Abduriyim S, Nishita Y, Kosintsev PA, Raichev E, Väinölä R, Kryukov AP, Abramov AV, Kaneko Y, Masuda R (2017) Diversity and evolution of MHC class II DRB gene in the Eurasian badger genus Meles (Mammalia: Mustelidae). Biol J Linn 122:258–273.  https://doi.org/10.1093/biolinnean/blx077 CrossRefGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–4109.  https://doi.org/10.1016/S0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  4. Ballentine B, Greenberg R (2010) Common garden experiment reveals genetic control of phenotypic divergence between swamp sparrow subspecies that lack divergence in neutral genotypes. PLoS One 5:e10229.  https://doi.org/10.1371/journal.pone.0010229 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Becker L, Nieberg C, Jahreis K, Peters E (2009) MHC class II variation in the endangered European mink Mustela lutreola (L. 1761)—consequence for species conservation. Immunogenetics 61:281–288.  https://doi.org/10.1007/s00251-009-0362-2 CrossRefPubMedGoogle Scholar
  6. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39.  https://doi.org/10.1038/364033a0 CrossRefPubMedGoogle Scholar
  7. Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256:50–52.  https://doi.org/10.1038/256050a0 CrossRefPubMedGoogle Scholar
  8. Doxiadis GGM, de Groot N, de Groot NG, Rotmans G, de Vos-Rouweler AJ, Bontrop RE (2010) Extensive DRB region diversity in cynomolgus macaques: recombination as a driving force. Immunogenetics 62:137–147.  https://doi.org/10.1007/s00251-010-0422-7 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Edwards SV, Hedrick PW (1998) Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends Ecol Evol 13:305–311.  https://doi.org/10.1016/S0169-5347(98)01416-5 CrossRefPubMedGoogle Scholar
  10. Figueroa F, Gunther E, Klein J (1988) MHC polymorphism predating speciation. Nature 335:265–267.  https://doi.org/10.1038/335265a0 CrossRefPubMedGoogle Scholar
  11. Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 32:415–435.  https://doi.org/10.1146/annurev.genet.32.1.415 CrossRefPubMedGoogle Scholar
  12. Inoue T, Murakami T, Abramov AV, Masuda R (2010) Mitochondrial DNA control region variations in the sable Martes zibellina of Hokkaido Island and the Eurasian continent, compared with the Japanese marten M. melampus. Mammal Study 35:145–155.  https://doi.org/10.3106/041.035.0301 CrossRefGoogle Scholar
  13. Kawakami T, Morgan TJ, Nippert BJ, Ocheltree TW, Keith R, Dhakal P, Ungerer MC (2011) Natural selection drives clinal life history patterns in the perennial sunflower species, Helianthus maximiliani. Mol Ecol 20:2318–2328.  https://doi.org/10.1111/j.1365-294X.2011.05105.x CrossRefPubMedGoogle Scholar
  14. Kennedy LJ, Altet L, Amgles JM, Barnes A, Carter SD, Francino O, Gerlach JA, Happ GM, Ollier WER, Polvi A, Thomson W, Wagner JL (1999) Nomenclature for factors of the dog major histocompatibility system (DLA), 1998. First report of the ISAG DLA nomenclature committee. Tissue Antigens 54:312–321.  https://doi.org/10.1034/j.1399-0039.1999.540319.x CrossRefPubMedGoogle Scholar
  15. Kelley J, Walter L, Trowsdale J (2005) Comparative genomics of major histocompatibility complexes. Immunogenetics 56:683–695.  https://doi.org/10.1007/s00251-004-0717-7 CrossRefPubMedGoogle Scholar
  16. Kirk H, Freeland JR (2011) Applications and implications of neutral versus non-neutral markers in molecular ecology. Int J Mol Sci 12:3966–3988.  https://doi.org/10.3390/ijms12063966 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Klein J (1987) Origin of major histocompatibility complex polymorphism: the trans-species hypothesis. Hum Immunol 19:155–162CrossRefPubMedGoogle Scholar
  18. Klein J, Bontrop RE, Dawkins RL, Erlich HA, Gyllensten UB, Heise ER, Jones PP, Parham P, Wakeland EK, Watkins DI (1990) Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics 31:217–219.  https://doi.org/10.1007/BF00204890 PubMedGoogle Scholar
  19. Klein J, O’Huigin C (1994) MHC polymorphism and parasites. Philos T R Soc B 346:351–358.  https://doi.org/10.1098/rstb.1994.0152 CrossRefGoogle Scholar
  20. Klein J, Sato A, Nagl S, O’huigin C (1998) Molecular transspecies polymorphism. Annu Rev Ecol Evol Syst 29:1–21.  https://doi.org/10.1146/annurev.ecolsys.29.1.1 CrossRefGoogle Scholar
  21. Koepfli KP, Deere KA, Slater GJ, Begg C, Begg K, Grassman L, Lucherini M, Veron G, Wayne RK (2008) Multigene phylogeny of the Mustelidae: resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. BMC Biol 6:1–22.  https://doi.org/10.1186/1741-7007-6-10 CrossRefGoogle Scholar
  22. Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901.  https://doi.org/10.1093/molbev/msl051 CrossRefPubMedGoogle Scholar
  23. Kumánovics A, Takada T, Lindahl KF (2003) Genomic organization of the mammalian MHC. Annu Rev Immunol 21:629–657.  https://doi.org/10.1146/annurev.immunol.21.090501.080116 CrossRefPubMedGoogle Scholar
  24. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452.  https://doi.org/10.1093/bioinformatics/btp187 CrossRefPubMedGoogle Scholar
  25. Martinsohn JT, Sousa AB, Guethlein LA, Howard JC (1999) The gene conversion hypothesis of MHC evolution: a review. Immunogenetics 50:168–200.  https://doi.org/10.1007/s002510050 CrossRefPubMedGoogle Scholar
  26. Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101:20–78CrossRefPubMedGoogle Scholar
  27. Miyoshi K, Higashi S (2005) Home range and habitat use by the sable Martes zibellina brachyura in a Japanese cool-temperate mixed forest. Ecol Res 20:95–101.  https://doi.org/10.1007/s11284-004-0012-y CrossRefGoogle Scholar
  28. Mizumachi K, Nishita Y, Spassov N, Raichev EG, Peeva S, Kaneko Y, Masuda R (2017) Molecular phylogenetic status of the Bulgarian marbled polecat (Vormela peregusna, Mustelidae, Carnivora), revealed by Y chromosomal genes and mitochondrial DNA sequences. Biochem Syst Ecol 70:99–107.  https://doi.org/10.1016/j.bse.2017.01.011 CrossRefGoogle Scholar
  29. Monakhov VG (2011) Martes zibellina (Carnivora: Mustelidae). Mamm Spp 43:75–86.  https://doi.org/10.1644/876.1 CrossRefGoogle Scholar
  30. Murrell B, Wertheim JO, Moola S, Weighill T, Kosakovsky SK, Pond SL (2012) Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8:e1002764.  https://doi.org/10.1371/journal.pgen.1002764 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nagai T, Murakami T, Masuda R (2012) Genetic variation and population structure of the sable Martes zibellina on eastern Hokkaido, Japan, revealed by microsatellite analysis. Mammal Study 37:323–330.  https://doi.org/10.3106/041.037.0406 CrossRefGoogle Scholar
  32. Nagai T, Murakami T, Masuda R (2014) Effectiveness of noninvasive DNA analysis to reveal isolated-forest use by the sable Martes zibellina on eastern Hokkaido, Japan. Mammal Study 39:99–104.  https://doi.org/10.3106/041.039.0205 CrossRefGoogle Scholar
  33. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  34. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  35. Nishita Y, Abramov AV, Kosintsev PA, Lin LK, Watanabe S, Yamazaki K, Kaneko Y, Masuda R (2015) Genetic variation of the MHC class II DRB genes in the Japanese weasel, Mustela itatsi, endemic to Japan, compared with the Siberian weasel, Mustela sibirica. Tissue Antigens 86:431–442.  https://doi.org/10.1111/tan.12700 CrossRefPubMedGoogle Scholar
  36. Nishita Y, Kosintsev PA, Haukisalmi V, Väinölä R, Raichev E, Murakami T, Abramov AV, Kaneko Y, Masuda R (2017) Diversity of MHC class II DRB alleles in the Eurasian population of the least weasel, Mustela nivalis (Mustelidae, Mammalia). Biol J Linn Soc 121:28–37.  https://doi.org/10.1093/biolinnean/blw028 CrossRefGoogle Scholar
  37. Oomen RA, Gillett RM, Kyle CJ (2013) Comparison of 454 pyrosequencing methods for characterizing the major histocompatibility complex of nonmodel species and the advantages of ultra deep coverage. Mol Ecol Resour 13:103–116.  https://doi.org/10.1111/1755-0998.12027 CrossRefPubMedGoogle Scholar
  38. Penn DJ, Damjanovich K, Potts WK (2002) MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc Natl Acad Sci U S A 99:11260–11264.  https://doi.org/10.1073/pnas.162006499 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21.  https://doi.org/10.1038/sj.hdy.6800724 CrossRefPubMedGoogle Scholar
  40. Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. Available at: http://beast.bio.ed.ac.uk/Tracer. (accessed 11 December 2013)
  41. Reche PA, Reinherz EL (2003) Sequence variability analysis of human class I and class II MHC molecules: functional and structural correlates of amino acid polymorphisms. J Mol Biol 15:623–641.  https://doi.org/10.1016/S0022-2836(03)00750-2 CrossRefGoogle Scholar
  42. Richter-Boix A, Quintela M, Segelbacher G, Laurila A (2011) Genetic analysis of differentiation among breeding ponds reveals a candidate gene for local adaptation in Rana arvalis. Mol Ecol 20:1582–1600.  https://doi.org/10.1111/j.1365-294X.2011.05025.x CrossRefPubMedGoogle Scholar
  43. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.  https://doi.org/10.1093/bioinformatics/btg180 CrossRefPubMedGoogle Scholar
  44. Sato JJ, Wolsan M, Prevosti FJ, D'Elía G, Begg C, Begg K, Hosoda T, Campbell KL, Suzuki H (2012) Evolutionary and biogeographic history of weasel-like carnivorans (Musteloidea). Mol Phylogenet Evol 63:745–757.  https://doi.org/10.1016/j.ympev.2012.02.025 CrossRefPubMedGoogle Scholar
  45. Sin YW, Dugdale HL, Newman C, Macdonald DW, Burke T (2012) MHC class II genes in the European badger (Meles meles): characterization, patterns of variation, and transcription analysis. Immunogenetics 64:313–327.  https://doi.org/10.1007/s00251-011-0578-9 CrossRefPubMedGoogle Scholar
  46. Swain S (1983) T cell subsets and the recognition of MHC class. Immunol Rev 74:129–142.  https://doi.org/10.1111/j.1600-065X.1983.tb01087.x CrossRefPubMedGoogle Scholar
  47. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedPubMedCentralGoogle Scholar
  48. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577.  https://doi.org/10.1080/10635150701472164 CrossRefPubMedGoogle Scholar
  49. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739.  https://doi.org/10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tanabe AS (2011) Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Mol Ecol Resour 11:914–921.  https://doi.org/10.1111/j.1755-0998.2011.03021.x CrossRefPubMedGoogle Scholar
  51. Toh H, Savoie CJ, Kamikawaji N, Muta S, Sasazuki T, Kuhara S (2000) Changes at the floor of the peptide-binding groove induce a strong preference for proline at position 3 of the bound peptide: molecular dynamics simulations of HLA-A*0217. Biopolymers 54:318–327.  https://doi.org/10.1002/1097-0282(20001015)54:5<318::AID-BIP30>3.0.CO;2-T CrossRefPubMedGoogle Scholar
  52. Traheme JA (2008) Human MHC architecture and evolution: implications for disease association studies. Int J Immunogenet 35:179–192.  https://doi.org/10.1111/j.1744-313X.2008.00765.x CrossRefGoogle Scholar
  53. Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15:496–503.  https://doi.org/10.1016/S0169-5347(00)01994-7 CrossRefPubMedGoogle Scholar
  54. Yang Z, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19:908–917.  https://doi.org/10.1093/oxfordjournals.molbev.a004148 CrossRefPubMedGoogle Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2018

Authors and Affiliations

  • Yoshinori Nishita
    • 1
  • Alexei V. Abramov
    • 2
  • Takahiro Murakami
    • 3
  • Ryuichi Masuda
    • 1
  1. 1.Department of Biological Sciences, Faculty of ScienceHokkaido UniversitySapporoJapan
  2. 2.Zoological InstituteRussian Academy of SciencesSaint PetersburgRussia
  3. 3.Shiretoko MuseumShariJapan

Personalised recommendations