Structural Characterization and Disulfide Assignment of Spider Peptide Phα1β by Mass Spectrometry

  • Kelly L. Wormwood
  • Armand Gatien Ngounou Wetie
  • Marcus Vinicius Gomez
  • Yue Ju
  • Paul Kowalski
  • Marius Mihasan
  • Costel C. Darie
Focus: 29th Sanibel Conference, Peptidomics: Bridging the Gap Between Proteomics and Metabolomics by MS: Research Article


Native Phα1β is a peptide purified from the venom of the armed spider Phoneutria nigriventer that has been shown to have an extensive analgesic effect with fewer side effects than ω-conotoxin MVIIA. Recombinant Phα1β mimics the effects of the native Phα1β. Because of this, it has been suggested that Phα1β may have potential to be used as a therapeutic for controlling persistent pathological pain. The amino acid sequence of Phα1β is known; however, the exact structure and disulfide arrangement has yet to be determined. Determination of the disulfide linkages and exact structure could greatly assist in pharmacological analysis and determination of why this peptide is such an effective analgesic. Here, we used biochemical and mass spectrometry approaches to determine the disulfide linkages present in the recombinant Phα1β peptide. Using a combination of MALDI-MS, direct infusion ESI-MS, and nanoLC-MS/MS analysis of the undigested recombinant Phα1β peptide and digested with AspN, trypsin, or AspN/trypsin, we were able to identify and confirm all six disulfide linkages present in the peptide as Cys1-2, Cys3-4, Cys5-6, Cys7-8, Cys9-10, and Cys11-12. These results were also partially confirmed in the native Phα1β peptide. These experiments provide essential structural information about Phα1β and may assist in providing insight into the peptide’s analgesic effect with very low side effects.

Graphical Abstract


Disulfide bridges Mass spectrometry Venom peptides Protein structure 



Matrix-assisted laser desorption ionization


Mass spectrometry


MALDI mass spectrometry


Electrospray ionization


Electrospray ionization mass spectrometry


Nanoliquid chromatography


Nanoliquid chromatography tandem mass spectrometry


5,5-Dithio-bis-(2-nitrobenzoic acid)

E. coli

Escherichia coli


Formic acid




Quadrupole-time of flight


Ultra performance liquid chromatography


High-performance liquid chromatography


Tandem mass spectrometry


α-Cyano-4-hydroxycinnamic acid


Trifluoroacetic acid







The authors thank the members of the lab for fruitful discussions.

Funding Information

KLW was supported by the ASPIRE Graduate Student Fellowship through Clarkson University’s CUPO Office. MM was supported by the Fulbright Senior Postdoctoral Fellowship awarded by the Romania-USA Fulbright Commission to MM (guest) and CCD (host). MVG’s work was supported through REDE Fapemig (CBB-RED-00006-14), CNPq (471070/2012-2), Capes Toxinology (AUX-PE 1444/2011), and Fapemig (PPM-00482-15).

Supplementary material

13361_2018_1904_MOESM1_ESM.pptx (351 kb)
ESM 1 Supplemental Figure 1 A) MS spectra of the undigested Phα1β peptide demonstrating of the presence of the fully disulfide linked peptide by m/z 862.9 (7+), 1006.6 (6+), 1207.7 (5+) and 1509.1 (4+), which correspond to the mass of the Phα1β peptide minus 12 Da and B) The MS/MS fragmentation for each of the previously mentioned precursor ions demonstrating the inability for the peaks to fragment sufficiently enough to assign disulfide arrangements. Supplemental Figure 2 Identification of Cys7-8 disulfide linked. A) MSMS fragmentation of the precursor ion (inset) with m/z 863.37(2+) corresponds to the mass of the peptide DNQCYCPPGSSLGIFK with cysteines disulfide linked (minus 2 Da). B) MSMS fragmentation of the precursor ion (inset) with m/z 879.33(2+) corresponds to the mass of the peptide DNQCYCPPGSSLGIFK with cysteines disulfide linked (minus 2 Da), and modified by 32 Da. C) MSMS fragmentation of the precursor ion (inset) with m/z 895.82(2+) corresponds to the mass of the peptide DNQCYCPPGSSLGIFK with cysteines disulfide linked (minus 2 Da), and modified by 64 Da. The spectra from A, B & C resulted from an AspN digestion. Supplemental Figure 3 Confirmation of the Cys7-8 and Cys9-10 disulfide linkage by MSMS fragmentation of the precursor ion (inset) with m/z 1044.88 (2+). This corresponds to the peptide DNQCYCPPGSSLGIFKCSCA with Cys 7-to Cys 10 disulfide linked (minus 4 Da). Supplemental Figure 4 Confirmation of all disulfide linkages present in the peptide by MALDI-MS analysis of the Phα1β peptide. A) MS spectrum of the intact peptide and the peptide fragments; B) LIFT MS/MS spectrum of the intact peptide. These experiments suggest that all Cys 1 to Cys 12, Cys 1 to Cys 8 and Cys 9 to Cys 12 are disulfide linked (A). These experiments also suggest that Cys 3 to Cys 12, Cys 9 to Cys 12 and Cys 11-12 are also disulfide linked. Supplemental Figure 5 Zoom into the 6 kDa region of MALDI-MS spectra for the peaks that correspond to the intact recombinant (A) and native (B) Phα1β peptide, which demonstrates that all cysteine residues are disulfide linked. Supplemental Figure 6 MALDI-MS spectra for the peaks that correspond to the intact and truncated recombinant (A) and native (B) Phα1β peptide, as analyzed in linear (A) and reflective (B) positive mode. Supplemental Figure 7 MALDI-MS/MS fragmentation of the recombinant (A) and native (B) Phα1β peptides. In both spectra, we identified two fragments with m/z 1233.26(1+) and 2133.82(1+) (A) or 1233.56(1+) and 2134.02(1+) (B), which corresponded to peptides FKCSCAHANKY and CIPRGEICTDDCECCGCDNQ, each with their cysteines intramolecularly disulfide linked. (PPTX 351 kb)


  1. 1.
    Cordeiro Mdo, N., de Figueiredo, S.G., Valentim Ado, C., Diniz, C.R., von Eickstedt, V.R., Gilroy, J., Richardson, M.: Purification and amino acid sequences of six Tx3 type neurotoxins from the venom of the Brazilian ‘armed’ spider Phoneutria nigriventer (Keys). Toxicon. 31, 35–42 (1993)CrossRefGoogle Scholar
  2. 2.
    Souza, A.H., Ferreira, J., Cordeiro Mdo, N., Vieira, L.B., De Castro, C.J., Trevisan, G., Reis, H., Souza, I.A., Richardson, M., Prado, M.A., Prado, V.F., Gomez, M.V.: Analgesic effect in rodents of native and recombinant Ph alpha 1beta toxin, a high-voltage-activated calcium channel blocker isolated from armed spider venom. Pain. 140, 115–126 (2008)CrossRefGoogle Scholar
  3. 3.
    Vieira, L.B., Kushmerick, C., Hildebrand, M.E., Garcia, E., Stea, A., Cordeiro, M.N., Richardson, M., Gomez, M.V., Snutch, T.P.: Inhibition of high voltage-activated calcium channels by spider toxin PnTx3-6. J. Pharmacol. Exp. Ther. 314, 1370–1377 (2005)CrossRefGoogle Scholar
  4. 4.
    Rigo, F.K., Trevisan, G., Rosa, F., Dalmolin, G.D., Otuki, M.F., Cueto, A.P., de Castro Junior, C.J., Romano-Silva, M.A., Cordeiro, M.d.N., Richardson, M., Ferreira, J., Gomez, M.V.: Spider peptide Phα1β induces analgesic effect in a model of cancer pain. Cancer Sci. 104, 1226–1230 (2013)CrossRefGoogle Scholar
  5. 5.
    Yang, C.Y., Kim, T.W., Weng, S.A., Lee, B.R., Yang, M.L., Gotto Jr., A.M.: Isolation and characterization of sulfhydryl and disulfide peptides of human apolipoprotein B-100. Proc. Natl. Acad. Sci. U. S. A. 87, 5523–5527 (1990)CrossRefGoogle Scholar
  6. 6.
    van der Wel, H., Iyengar, R.B., van Brouwershaven, J., van Wassenaar, P.D., Bel, W.J., van der Ouderaa, F.J.: Assignment of the disulphide bonds in the sweet-tasting protein thaumatin I. Eur. J. Biochem. 144, 41–45 (1984)CrossRefGoogle Scholar
  7. 7.
    Darie, C.C., Biniossek, M.L., Jovine, L., Litscher, E.S., Wassarman, P.M.: Structural characterization of fish egg vitelline envelope proteins by mass spectrometry. Biochemistry. 43, 7459–7478 (2004)CrossRefGoogle Scholar
  8. 8.
    Darie, C.C., Biniossek, M.L., Gawinowicz, M.A., Milgrom, Y., Thumfart, J.O., Jovine, L., Litscher, E.S., Wassarman, P.M.: Mass spectrometric evidence that proteolytic processing of rainbow trout egg vitelline envelope proteins takes place on the egg. J. Biol. Chem. 280, 37585–37598 (2005)CrossRefGoogle Scholar
  9. 9.
    Sokolowska, I., Ngounou Wetie, A.G., Woods, A.G., Darie, C.C.: Automatic determination of disulfide bridges in proteins. J Lab Autom. 17, 408–416 (2012)CrossRefGoogle Scholar
  10. 10.
    Darie, C.C., Deinhardt, K., Zhang, G., Cardasis, H.S., Chao, M.V., Neubert, T.A.: Identifying transient protein-protein interactions in EphB2 signaling by blue native PAGE and mass spectrometry. Proteomics. 11, 4514–4528 (2011)CrossRefGoogle Scholar
  11. 11.
    Sokolowska, I., Dorobantu, C., Woods, A.G., Macovei, A., Branza-Nichita, N., Darie, C.C.: Proteomic analysis of plasma membranes isolated from undifferentiated and differentiated HepaRG cells. Proteome Sci. 10, 47–47 (2012)CrossRefGoogle Scholar
  12. 12.
    Sokolowska, I., Gawinowicz, M.A., Ngounou Wetie, A.G., Darie, C.C.: Disulfide proteomics for identification of extracellular or secreted proteins. Electrophoresis. 33, 2527–2536 (2012)CrossRefGoogle Scholar
  13. 13.
    Spellman, D.S., Deinhardt, K., Darie, C.C., Chao, M.V., Neubert, T.A.: Stable isotopic labeling by amino acids in cultured primary neurons: application to brain-derived neurotrophic factor-dependent phosphotyrosine-associated signaling. Mol Cell Proteomics : MCP. 7, 1067–1076 (2008)CrossRefGoogle Scholar
  14. 14.
    Soding, J.: Protein homology detection by HMM-HMM comparison. Bioinformatics. 21, 951–960 (2005)CrossRefGoogle Scholar
  15. 15.
    Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M., Barton, G.J.: Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 25, 1189–1191 (2009)CrossRefGoogle Scholar
  16. 16.
    Vyas, V.K., Ukawala, R.D., Ghate, M., Chintha, C.: Homology modeling a fast tool for drug discovery: current perspectives. Indian J. Pharm. Sci. 74, 1–17 (2012)CrossRefGoogle Scholar
  17. 17.
    Xiang, Z.: Advances in homology protein structure modeling. Curr. Protein Pept. Sci. 7, 217–227 (2006)CrossRefGoogle Scholar
  18. 18.
    Nadezhdin, K.D., Romanovskaia, D.D., Sachkova, M.Y., Oparin, P.B., Kovalchuk, S.I., Grishin, E.V., Arseniev, A.S., Vassilevski, A.A.: Modular toxin from the lynx spider Oxyopes takobius: structure of spiderine domains in solution and membrane-mimicking environment. Protein Sci. 26, 611–616 (2017)CrossRefGoogle Scholar
  19. 19.
    Villegas, E., Adachi-Akahane, S., Bosmans, F., Tytgat, J., Nakajima, T., Corzo, G.: Biochemical characterization of cysteine-rich peptides from Oxyopes sp. venom that block calcium ion channels. Toxicon. 52, 228–236 (2008)CrossRefGoogle Scholar
  20. 20.
    Cheek, S., Krishna, S.S., Grishin, N.V.: Structural classification of small, disulfide-rich protein domains. J. Mol. Biol. 359, 215–237 (2006)CrossRefGoogle Scholar
  21. 21.
    Kamikubo, Y., De Guzman, R., Kroon, G., Curriden, S., Neels, J.G., Churchill, M.J., Dawson, P., Ołdziej, S., Jagielska, A., Scheraga, H.A., Loskutoff, D.J., Dyson, H.J.: Disulfide bonding arrangements in active forms of the somatomedin B domain of human vitronectin. Biochemistry. 43, 6519–6534 (2004)CrossRefGoogle Scholar
  22. 22.
    Zhou, A.: Functional structure of the somatomedin B domain of vitronectin. Protein Sci. 16, 1502–1508 (2007)CrossRefGoogle Scholar
  23. 23.
    Rigo, F.K., Trevisan, G., De Prá, S.D.-T., Cordeiro, M.N., Borges, M.H., Silva, J.F., Santa Cecilia, F.V., de Souza, A.H., de Oliveira Adamante, G., Milioli, A.M., de Castro Junior, C.J., Ferreira, J., Gomez, M.V.: The spider toxin Phα1β recombinant possesses strong analgesic activity. Toxicon. 133, 145–152 (2017)CrossRefGoogle Scholar
  24. 24.
    Boja, E.S., Hoodbhoy, T., Fales, H.M., Dean, J.: Structural characterization of native mouse zona pellucida proteins using mass spectrometry. J. Biol. Chem. 278, 34189–34202 (2003)CrossRefGoogle Scholar
  25. 25.
    Han, L., Monne, M., Okumura, H., Schwend, T., Cherry, A.L., Flot, D., Matsuda, T., Jovine, L.: Insights into egg coat assembly and egg-sperm interaction from the X-ray structure of full-length ZP3. Cell. 143, 404–415 (2010)CrossRefGoogle Scholar
  26. 26.
    Jovine, L., Darie, C.C., Litscher, E.S., Wassarman, P.M.: Zona pellucida domain proteins. Annu. Rev. Biochem. 74, 83–114 (2005)CrossRefGoogle Scholar
  27. 27.
    Monne, M., Han, L., Schwend, T., Burendahl, S., Jovine, L.: Crystal structure of the ZP-N domain of ZP3 reveals the core fold of animal egg coats. Nature. 456, 653–657 (2008)CrossRefGoogle Scholar
  28. 28.
    Zhao, M., Boja, E.S., Hoodbhoy, T., Nawrocki, J., Kaufman, J.B., Kresge, N., Ghirlando, R., Shiloach, J., Pannell, L., Levine, R.L., Fales, H.M., Dean, J.: Mass spectrometry analysis of recombinant human ZP3 expressed in glycosylation-deficient CHO cells. Biochemistry. 43, 12090–12104 (2004)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  • Kelly L. Wormwood
    • 1
  • Armand Gatien Ngounou Wetie
    • 1
  • Marcus Vinicius Gomez
    • 2
  • Yue Ju
    • 3
  • Paul Kowalski
    • 3
  • Marius Mihasan
    • 1
    • 4
  • Costel C. Darie
    • 1
  1. 1.Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular ScienceClarkson UniversityPotsdamUSA
  2. 2.Institute of Education and Research Santa Casa Belo Horizonte-Laboratory of ToxinsBelo HorizonteBrazil
  3. 3.Bruker DaltonicsBillericaUSA
  4. 4.Department of BiologyAlexandru Ioan Cuza University of IasiIasiRomania

Personalised recommendations