Gas Flow and Ion Transfer in Heated ESI Capillary Interfaces

  • Laurent Bernier
  • Harry Pinfold
  • Matthias Pauly
  • Stephan Rauschenbach
  • Julius Reiss
Research Article


Transfer capillaries are the preferred means to transport ions, generated by electrospray ionization, from ambient conditions to vacuum. During the transfer of ions through the narrow, long tubes into vacuum, substantial losses are typical. However, recently it was demonstrated that these losses can be avoided altogether. To understand the experimental observation and provide a general model for the ion transport, here, we investigate the ion transport through capillaries by numerical simulation of interacting ions. The simulation encompasses all relevant factors, such as space charge, diffusion, gas flow, and heating. Special attention is paid to the influence of the gas flow on the transmission and especially the change imposed by heating. The gas flow is modeled by a one-dimensional gas dynamics description. A large number of ions are treated as point particles in this gas flow. This allows to investigate the influence of the capillary heating on the gas flow and by this on the ion transport. The results are compared with experimental findings.

Graphical Abstract


ESI Transport capillary Atmospheric pressure interfaces Simulation Transfer High transfer Gasdynamic Gasflow Design principles 



This work is supported by the Deutsche Forschungsgemeinschaft (DFG) under RE-3774/1-1.

Supplementary material

13361_2018_1895_MOESM1_ESM.pdf (459 kb)
ESM 1 (PDF 458 kb)


  1. 1.
    Bruins, A.P., Covey, T.R., Henion, J.D.: Ion spray interface for combined liquid chromatography/atmospheric pressure ionization mass spectrometry. Anal. Chem. 59, 2642–2646 (1987)CrossRefGoogle Scholar
  2. 2.
    Chowdhury, S.K., Katta, V., Chait, B.T.: An electrospray-ionization mass spectrometer with new features. Rapid Commun. Mass Spectrom. 4, 81–87 (1990)CrossRefGoogle Scholar
  3. 3.
    Dole, M., Mack, L.L., Hines, R.L., Mobley, R.C., Ferguson, L.D., Alice, M.B.: Molecular beams of macroions. J. Chem. Phys. 49, 2240 (1968)CrossRefGoogle Scholar
  4. 4.
    Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization for mass spectrometry of large biomolecules. Science. 246(4926), 64–71 (1989)CrossRefGoogle Scholar
  5. 5.
    Page, J.S., Marginean, I., Baker, E.S., Kelly, R.T., Tang, K., Smith, R.D.: Biases in ion transmission through an electrospray ionization-mass spectrometry capillary inlet. J. Am. Soc. Mass Spectrom. 20(12), 2265–2272 (2009)CrossRefGoogle Scholar
  6. 6.
    Smith, R.D., Loo, J.A., Edmonds, C.G., Barinaga, C.J., Udseth, H.R.: New developments in biochemical mass-spectrometry - electrospray ionization. Anal. Chem. 62(9), 882–899 (1990) 142CrossRefGoogle Scholar
  7. 7.
    Lin, B., Sunner, J.: Ion transport by viscous gas flow through capillaries. J. Am. Soc. Mass Spectrom. 5(10), 873–885 (1994)CrossRefGoogle Scholar
  8. 8.
    Pauly, M., Sroka, M., Reiss, J., Rinke, G., Albarghash, A., Vogelgesang, R., Hahne, H., Kuster, B., Sesterhenn, J., Kern, K., Rauschenbach, S.: A hydrodynamically optimized nano-electrospray ionization source and vacuum interface. Analyst. 139, 1856–1867 (2014)CrossRefGoogle Scholar
  9. 9.
    Krutchinsky, A.N., Padovan, J.C., Cohen, H., Chait, B.T.: Optimizing electrospray interfaces using slowly diverging conical duct (conduct) electrodes. J. Am. Soc. Mass Spectrom. 26(4), 659–667 (2015)CrossRefGoogle Scholar
  10. 10.
    Kim, T., Udseth, H.R., Smith, R.D.: Improved ion transmission from atmospheric pressure to high vacuum using a multicapillary inlet and electrodynamic ion funnel interface. Anal. Chem. 72(20), 5014–5019 (2000)CrossRefGoogle Scholar
  11. 11.
    Kim, T., Tang, K.Q., Udseth, H.R., Smith, R.D.: A multicapillary inlet jet disruption electrodynamic ion funnel interface for improved sensitivity using atmospheric pressure ion sources. Anal. Chem. 73(17), 4162–4170 (2001)CrossRefGoogle Scholar
  12. 12.
    Page, J.S., Kelly, R.T., Tang, K., Smith, R.D.: Ionization and transmission efficiency in an electrospray-ionization mass spectrometry interface. J. Am. Soc. Mass Spectrom. 18(9), 1582–1590 (2007)CrossRefGoogle Scholar
  13. 13.
    Poehler, T., Kunte, R., Hoenen, H., Jeschke, P., Wissdorf, W., Brockmann, K.J., Benter, T.: Numerical simulation and experimental validation of the three-dimensional flow field and relative analyte concentration distribution in an atmospheric pressure ion source. J. Am. Soc. Mass Spectrom. 22(11), 2061–2069 (2011)CrossRefGoogle Scholar
  14. 14.
    Wissdorf, W., Lorenz, M., Poehler, T., Hoenen, H., Benter, T.: Atmospheric pressure ion source development: experimental validation of simulated ion trajectories within complex flow and electrical fields. J. Am. Soc. Mass Spectrom. 24(10), 1456–1466 (2013)CrossRefGoogle Scholar
  15. 15.
    Jurčíček, P., Liu, L., Zou, H.: Numerical simulation of monte carlo ion transport at atmospheric pressure within improved air amplifier geometry. Int. J. Ion Mobil. Spectrom. 17(3), 157–166 (2014)Google Scholar
  16. 16.
    Wissdorf, W., Pohler, L., Klee, S., Mueller, D., Benter, T.: Simulation of ion motion at atmospheric pressure: particle tracing versus electrokinetic flow. J. Am. Soc. Mass Spectrom. 23(2), 397–406 (2012)CrossRefGoogle Scholar
  17. 17.
    Mayer, T., Borsdorf, H.: Ion transfer from an atmospheric pressure ion funnel into a mass spectrometer with different interface options: simulation-based optimization of ion transmission efficiency. Rapid Commun. Mass Spectrom. 30(3), 372–378 (2016) RCM-15-0412.R1CrossRefGoogle Scholar
  18. 18.
    Zhou, X., Zheng, O.: Following the ions through a mass spectrometer with atmospheric pressure interface: simulation of complete ion trajectories from ion source to mass analyzer. Anal. Chem. 88(14), 7033–7040 (2016)CrossRefGoogle Scholar
  19. 19.
    Gimelshein, N., Gimelshein, S., Lilly, T., Moskovets, E.: Numerical modeling of ion transport in a ESI-MS system. J. Am. Soc. Mass Spectrom. 25, 820–831 (2014) pre-printCrossRefGoogle Scholar
  20. 20.
    Wißdorf, W., Müller, D., Brachthäuser, Y., Langner, M., Derpmann, V., Klopotowski, S., Polaczek, C., Kersten, H., Brockmann, K., Benter, T.: Gas flow dynamics in inlet capillaries: evidence for non laminar conditions. J. Am. Soc. Mass Spectrom. 27(9), 1550–1563 (2016)CrossRefGoogle Scholar
  21. 21.
    Skoblin, M., Chudinov, A., Soulimenkov, I., Brusov, V., Kozlovskiy, V.: Gas flow in the capillary of the atmosphere-to-vacuum interface of mass spectrometers. J. Am. Soc. Mass Spectrom. 28(10), 2132–2142 (2017)Google Scholar
  22. 22.
    Anderson, J.: Modern Compressible Flow. McGraw-Hill, Boston (1990)Google Scholar
  23. 23.
    Davidson, P.A.: Turbulence—an Introduction for Scientists and Engineers. Oxford University Press, New York (2004)Google Scholar
  24. 24.
    Konermann, L., Ahadi, E., Rodriguez, A.D., Vahidi, S.: Unraveling the mechanism of electrospray ionization. Anal. Chem. 85(1), 2–9 (2013)CrossRefGoogle Scholar
  25. 25.
    Kebarle, P., Liang, T.: From ions in solution to ions in the gas phase—the mechanism of electrospray mass spectrometry. Anal. Chem. 65(22), 972A–986A (1993)Google Scholar
  26. 26.
    Bartlmä, F.: Gasdynamik der Verbrennung. Springer-Verlag, Wien (1975)Google Scholar
  27. 27.
    Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D., Hof, B.: The onset of turbulence in pipe flow. Science. 333(6039), 192–196 (2011)CrossRefGoogle Scholar
  28. 28.
    Prandtl, L., Oswatitsch, K., Wieghardt, K.: Führer durch die Strömungslehre, 9. Auflage. Vieweg+Teubner Verlag, Braunschweig (1993)Google Scholar
  29. 29.
    Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the laplace equation in three dimensions. Acta numerica. 6, 229–269 (1996)Google Scholar
  30. 30.
    Yokota, R., Barba, L.A.: A tuned and scalable fast multipole method as a preeminent algorithm for exascale systems. Int. J. High Perform. Comput. Appl. 26(4), 337–346 (2012)CrossRefGoogle Scholar
  31. 31.
    Stephen Berry, R., Rice, S.A., Ross J.: Physical Chemistry, Second Edition. Oxford University Press, Oxford (2000)Google Scholar
  32. 32.
    Mason, E.A., McDaniel, E.W.: Transport Properties of Ions in Gases, vol. 6. Wiley, New York (1988)Google Scholar
  33. 33.
    Hinze, J.O.: Turbulence (Mechanical Engineering Series). McGraw-Hill Inc., US (1975)Google Scholar
  34. 34.
    Manisali, I., Chen, D.D.Y., Schneider, B.B.: Electrospray ionization source geometry for mass spectrometry: past, present, and future. TrAC Trends Anal. Chem. 25(3), 243–256 (2006)CrossRefGoogle Scholar
  35. 35.
    Zook, D.R., Bruins, A.P.: On cluster ions, ion transmission, and linear dynamic range limitations in electrospray (ionspray) mass spectrometry. Int. J. Mass Spectrom. Ion Process. 162(1), 129–147 (1997)CrossRefGoogle Scholar
  36. 36.
    El-Faramawy, A., Michael Siu, K.W., Thomson, B.A.: Efficiency of nano-electrospray ionization. J. Am. Soc. Mass Spectrom. 16(10), 1702–1707 (2005)CrossRefGoogle Scholar
  37. 37.
    Marginean, I., Kelly, R.T., Prior, D.C., LaMarche, B.L., Tang, K., Smith, R.D.: Analytical characterization of the electrospray ion source in the nanoflow regime. Anal. Chem. 80(17), 6573–6579 (2008)CrossRefGoogle Scholar
  38. 38.
    Don, K., Gunaratne, D., Prabhakaran, V., Ibrahim, Y.M., Norheim, R.V., Johnson, G.E., Laskin, J.: Design and performance of a high-flux electrospray ionization source for ion soft landing. Analyst. 140(9), 2957–2963 (2015)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2018

Authors and Affiliations

  1. 1.TU BerlinBerlinGermany
  2. 2.MPI f. Solid State ResearchStuttgartGermany
  3. 3.CNRS, Institut Charles SadronUniversité de StrasbourgStrasbourgFrance
  4. 4.Department of ChemistryOxford UniversityOxfordUK

Personalised recommendations