Skip to main content
Log in

Laboratory and glasshouse evaluation of the green lacewing, Chrysopa pallens (Neuroptera: Chrysopidae) against the western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae)

  • Original Research Paper
  • Published:
Applied Entomology and Zoology Aims and scope Submit manuscript

Abstract

Western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), is an important invasive polyphagous pest in vegetable and ornamental crops. The increasing resistance to chemical insecticides in F. occidentalis has resulted in heightened interest in alternative control methods including the generalist entomophagous predator Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae). The first part of this study evaluated the prey capacity of the three larval instars of C. pallens on F. occidentalis larvae, using functional responses. The C. pallens larvae exhibited a type III functional response to the F. occidentalis larvae. When offered 80 thrips larvae, 34–41 were consumed by a single C. pallens larvae within 24 h. The second part examined the effects of releasing C. pallens to control F. occidentalis on glasshouse-cultivated cucumber plants. In comparison with the control, releases of C. pallens larvae at densities of 2, 4, 8, and 16 per plant led to a reduction in F. occidentalis by 11%, 39%, 59%, and 68% of the larvae and 12%, 43%, 58%, and 68% of the adults, respectively, after 5 weeks. Our results suggested that the C. pallens may be an effective biological control agent for use against F. occidentalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Balduf WV (1974) The bionomics of entomophagous insects. Part II. Order Neuroptera. EW Classey, London, pp 214–355

  • Bao JZ, Gu JZ (1998) Chinese biological control. Shanxi Science Technology Press, Taiyuan, Shanxi

    Google Scholar 

  • Bennison JA, Maulden KA, Wardlow LR (1998) Novel strategies for improving biological control of western flower thrips on protected ornamentals—potential new biological control agents. Proc BCPC Conf Pest Dis 1:193–198

    Google Scholar 

  • Boatman ND, Parry HR, Bishop JD, Cuthbertson AG (2007) Impacts of agricultural change on farmland biodiversity in the UK. In: Hester RE, Harrison RM (eds) Biodiversity under threat. RSC Publishing, Cambridge, pp 1–32

    Google Scholar 

  • Brødsgaard HF (2004) Biological control of thrips on ornamental crops. In: Heinz KM, Driesche RG, Parella MP (eds) Biocontrol in protected culture. Ball Publishing, Batavia, pp 253–264

    Google Scholar 

  • Byeon YW, Tuda M, Kim JH, Choi MY (2011) Functional responses of aphid parasitoids, Aphidius colemani (Hymenoptera: Braconidae) and Aphelinus asychis (Hymenoptera: Aphelinidae). Biocontrol Sci Technol 21:57–70

    Article  Google Scholar 

  • Daane KM, Hagen KS, Mills NJ (1998) Predaceous insects for insects and mite control. In: Ridgway RL, Hoffmann MP, Inscoe MN, Glenister CS (eds) Mass-reared natural enemies: application, regulation, and needs. Thomas Say Publications in Entomological Society of America, Lanham, pp 61–115

    Google Scholar 

  • German TL, Ullman DE, Moyer JW (1992) Tospoviruses: diagnosis, molecular biology, phylogeny, and vector relationships. Annu Rev Phytopathol 30:315–348

    Article  CAS  PubMed  Google Scholar 

  • Hagley EAC, Miles N (1987) Release of Chrysoperla carnea Stephens (Neuroptera: Chrysopidae) for control of Tetranychus urticae Koch (Acarina: Tetranychidae) on peach grown in a protected environment structure. Can Entomol 119:205–206

    Article  Google Scholar 

  • Hassan SA, Klingauf F, Shahin F (1985) Role of Chrysopa carnea as an aphid predator on sugar beet and the effect of pesticides. J Appl Entomol 100:163–174

    CAS  Google Scholar 

  • Hassanpour M, Mohaghegh J, Iranipour S, Nouri-Ganbalani G, Enkegaard A (2011) Functional response of Chrysoperla carnea (Neuroptera: Chrysopidae) to Helicoverpa armigera (Lepidoptera: Noctuidae): effect of prey and predator stages. Insect Sci 18:217–224

    Article  Google Scholar 

  • Hassanpour M, Nouri-Ganbalani G, Mohaghegh J, Enkegaard A (2009) Functional response of different larval instars of the green lacewing, Chrysoperla carnea (Neuroptera: Chrysopidae), to the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). J Food Agric Environ 7:424–428

    Google Scholar 

  • Hassell MP (1978) The dynamics of arthropod predator-prey systems. Princeton University Press, Princeton, p 248

    Google Scholar 

  • Holling CS (1959) The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can Entomol 91:293–320

    Article  Google Scholar 

  • Huang N, Enkegaard A (2010) Predation capacity and prey preference of Chrysoperla carnea on Pieris brassicae. Biocontrol 55:379–385

    Article  Google Scholar 

  • Hydorn SB (1971) Food preferences of Chrysopa rufilabris Burmeister in north central Florida. Doctoral dissertation, University of Florida

  • Jensen SE (2000) Mechanisms associated with methiocarb resistance in Frankliniella occidentalis (Thysanoptera: Thripidae). J Econ Entomol 93:464–471

    Article  CAS  PubMed  Google Scholar 

  • Jonsson M, Wratten SD, Landis DA, Gurr GM (2008) Recent advances in conservation biological control of arthropods by arthropods. Biol Control 45:172–175

    Article  Google Scholar 

  • Juliano SA (2001) Non-linear curve fitting: predation and functional response curves. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Chapman and Hall, London, pp 159–182

    Google Scholar 

  • Khan I, Morse JG (1999a) Field evaluation of Chrysoperla spp. as predators of citrus thrips. Sarhad J Agric 15:607–610

    Google Scholar 

  • Khan I, Morse JG (1999b) Laboratory studies on evaluation of Chrysoperla spp. as predators of citrus thrips. Sarhad J Agric 15:459–465

    Google Scholar 

  • Kirk WD, Terry LI (2003) The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agric For Entomol 5:301–310

    Article  Google Scholar 

  • Klingen I, Johansen NS, Hofsvang T (1996) The predation of Chrysoperla carnea (Neuroptera: Chrysopidae) on eggs and larvae of Mamestra brassicae (Lepidoptera: Noctuidae). J Appl Entomol 120:363–637

    Article  Google Scholar 

  • Li DX, Tian J, Shen ZR (2007) Functional response of the predator Scolothrips takahashii to hawthorn spider mite, Tetranychus viennensis: effect of age and temperature. Biocontrol 52:41–61

    Article  Google Scholar 

  • Liang XH, Lei ZR, Wen JZ, Zhu ML (2010) The diurnal flight activity and influential factors of Frankliniella occidentalis in the greenhouse. Insect Sci 17:535–541

    Article  Google Scholar 

  • Liu C, Mao J, Zeng F (2015) Chrysopa septempunctata (Neuroptera: Chrysopidae) vitellogenin functions through effects on egg production and hatching. J Econ Entomol 108:2779–2788

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Wang S, Liu BM, Zhou CQ, Zhang F (2011) The predation function response and predatory behavior observation of Chrysopa pallens larva to Bemisia tabaci. Sci Agric Sin 6:010

    Google Scholar 

  • Mahdian K, Tirry L, De Clercq P (2007) Functional response of Picromerus bidens: effects of host plant. J Appl Entomol 131:160–164

    Article  Google Scholar 

  • Miller GL, Oswald JD, Miller DR (2004) Lacewings and scale insects: a review of predator/prey associations between the Neuropterida and Coccoidea (Insecta: Neuroptera, Raphidioptera, Hemiptera). Ann Entomol Soc Am 97:1103–1125

    Article  Google Scholar 

  • Morse JG, Hoddle MS (2006) Invasion biology of thrips. Annu Rev Entomol 51:67–89

    Article  CAS  PubMed  Google Scholar 

  • Murdoch WW, Oaten A (1975) Predation and population stability. Adv Ecol Res 9:1–131

    Article  Google Scholar 

  • New TR (1975) The biology of Chrysopidae and Hemerobiidae (Neuroptera), with reference to their usage as biocontrol agents: a review. Ecol Entomol 127:115–140

    Google Scholar 

  • Nordlund DA, Vacek DC, Ferro DN (1991) Predation of Colorado potato beetle (Coleoptera: Chrysomelidae) eggs and larvae by Chrysoperla rufilabris (Neuroptera: Chrysopidae) larvae in the laboratory and field cages. J Entomol Sci 26:443–449

    Article  Google Scholar 

  • Omkar PA (2005) Functional responses of coccinellid predators: an illustration of a logistic approach. J Insect Sci 5:1–6

    Google Scholar 

  • Pappu HR, Jones RAC, Jain RK (2009) Global status of tospovirus epidemics in diverse cropping systems: successes achieved and challenges ahead. Virus Res 141:219–236

    Article  CAS  PubMed  Google Scholar 

  • Principi MM, Canard M (1984) Feeding habits. In: Canard M, Séméria Y, New TR (eds) Biology of chrysopidae. Junk Publishers, The Hague, pp 76–92

    Google Scholar 

  • Reitz SR (2009) Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): The making of a pest. Fla Entomol 92:7–13

    Article  Google Scholar 

  • Reitz SR, Gao YL, Lei ZR (2011) Thrips: pests of concern to China and the United States. Agric Sci China 10:867–892

    Article  Google Scholar 

  • Rogers MA, Krischik VA, Martin LA (2007) Effect of soil application of imidacloprid on survival of adult green lacewing, Chrysoperla carnea (Neuroptera: Chrysopidae), used for biological control in greenhouse. Biol Control 42:172–177

    Article  CAS  Google Scholar 

  • Schenk D, Bacher S (2002) Functional response of a generalist insect predator to one of its prey species in the field. J Anim Ecol 71:524–531

    Article  Google Scholar 

  • Shrestha G, Enkegaard A, Giray T (2013) The green lacewing, Chrysoperla carnea: preference between lettuce aphids, Nasonovia ribisnigri, and western flower thrips, Frankliniella occidentalis. J Insect Sci 13:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594

    Article  CAS  PubMed  Google Scholar 

  • Tauber MJ, Tauber CA, Daane KM, Hagen KS (2000) Commercialization of predators: recent lessons from green lacewings (Neuroptera: Chrysopidae: Chrysoperla). Am Entomol 46:26–38

    Article  Google Scholar 

  • Trexler JC, McCulloch CE, Travis J (1988) How can functional response best be determined? Oecologia 76:206–214

    Article  PubMed  Google Scholar 

  • Trexler JC, Travis J (1993) Nontraditional regression analysis. Ecology 74:1629–1637

    Article  Google Scholar 

  • Webster CG, Reitz SR, Perry KL, Adkins S (2011) A natural mRNA reassortant arising from two species of plant-and insect-infecting bunya viruses and comparison of its sequence and biological properties to parental species. Virology 413:216–225

    Article  CAS  PubMed  Google Scholar 

  • Wiedenmann RN, O'Neil RJ (1991) Laboratory measurement of the functional response of Podisus maculiventris (Say) (Heteroptera: Pentatomidae). Environ Entomol 20:610–614

    Article  Google Scholar 

  • Wu SY, Zhang ZK, Gao YL, Xu XN, Lei ZR (2016) Interactions between foliage-and soil-dwelling predatory mites and consequences for biological control of Frankliniella occidentalis. Biocontrol 61:717–727

    Article  Google Scholar 

  • Wyckhuys KA, Lu Y, Morales H, Vazquez LL, Legaspi JC, Eliopoulos PA, Hernandez LM (2013) Current status and potential of conservation biological control for agriculture in the developing world. Biol Control 65:152–167

    Article  Google Scholar 

  • Xu XN, Borgemeister C, Poehling HM (2005) Biocontrol of wester flower thrips Frankliniella occidentalis (Pergande) by combined releases of plant-inhabiting predatory mite, Amblyseius cucumeris Oudemans or bug, Orius insidious Say with Soil-dwelling mite, Hypoaspis Aculeifer Canestrini. China Agriculture Science Technology Press, Beijing, pp 35–40

    Google Scholar 

  • Yang XK (1998) Discussion on the scientific name of Chrysopa pallens (Rambur) and related questions. Acta Ecol Sin 41:106–107

    Google Scholar 

  • Zamani AA, Talebi AA, Fathipour Y, Baniameri V (2006) Temperature-dependent functional response of two aphid parasitoids, Aphidius colemani and Aphidius matricariae (Hymenoptera: Aphidiidae), on the cotton aphid. J Pest Sci 79:183–188

    Article  Google Scholar 

  • Zhao Q, Chen J, Liu FX, Xiao WF, Peng Y (2008) Predation of Chrysopa pallens on Myzus persicae and Aphis nerii. J Environ Entomol 3:005

    Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Cecil L. Smith, University of Georgia, USA, for helping with the language editing of the manuscript. This work was supported by the National Key Research and Development Program of China (Grant no. 2016YFC1201200) and the China Agriculture Research System (CARS-23-D-08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengyong Wu or Zhongren Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S.C., Wang, E., Zhang, Z. et al. Laboratory and glasshouse evaluation of the green lacewing, Chrysopa pallens (Neuroptera: Chrysopidae) against the western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Appl Entomol Zool 54, 115–121 (2019). https://doi.org/10.1007/s13355-018-0601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13355-018-0601-9

Keywords

Navigation