De novo transcriptome of the whole-body of the gastropod mollusk Philomycus bilineatus, a pest with medical potential in China

Abstract

Philomycus bilineatus is a highly common gastropod mollusk pest in China and is also utilized to treat infectious diseases. However, no genomic resources are available for this non-model species. In the present study, the transcriptomic analysis of P. bilineatus was completed. After sequencing using the next generation sequencing technology, 9.11 Gb of clean reads were obtained, which led to the assembly and annotation of 145,523 transcripts and 125,690 unigenes. Unigenes were functionally classified using Gene Ontology (GO), euKaryotic Ortholog Groups of proteins (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG). A total of 27,554 unigenes were assigned into 55 GO terms, 13,989 unigenes were differentiated into 26 KOG categories, and 16,368 unigenes were assigned to 229 KEGG pathways. Furthermore, 16,614 simple sequence repeats (SSRs), 38 olfactory genes, and 40 antimicrobial peptide/protein genes were identified. The transcriptome profile of P. bilineatus will provide a valuable genomic resource for further study, will promote the development of new pest management strategies through interference of chemosensory communication, and will support potential medicinal uses of this species.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Bjorstad A, Fu H, Karlsson A, Dahlgren C, Bylund J (2005) Interleukin-8-derived peptide has antibacterial activity antimicrob agents. Chemother 49:3889–3895. https://doi.org/10.1128/AAC.49.9.3889-3895.2005

    CAS  Article  Google Scholar 

  2. Brito NF, Moreira MF, Melo AC (2016) A look inside odorant-binding proteins in insect chemoreception. J Insect Physiol 95:51–65. https://doi.org/10.1016/j.jinsphys.2016.09.008

    CAS  Article  PubMed  Google Scholar 

  3. Bruhn KW, Spellberg B (2015) Transferrin-mediated iron sequestration as a novel therapy for bacterial and fungal infections. Curr Opin Microbiol 27:57–61. https://doi.org/10.1016/j.mib.2015.07.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Cattaneo AM (2018) Current status on the functional characterization of chemosensory receptors of Cydia pomonella (Lepidoptera: Tortricidae). Front Behav Neurosci 12:189. https://doi.org/10.3389/fnbeh.2018.00189

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Chipman DM, Sharon N (1969) Mechanism of lysozyme action Science 165:454–465

  6. Deng YW et al (2014) De novo assembly, gene annotation, and simple sequence repeat marker development using Illumina paired-end transcriptome sequences in the pearl oyster Pinctada maxima. Biosci Biotechnol Biochem 78:1685–1692. https://doi.org/10.1080/09168451.2014.936351

    CAS  Article  PubMed  Google Scholar 

  7. Du XJ, Wang JX, Liu N, Zhao XF, Li FH, Xiang JH (2006) Identification and molecular characterization of a peritrophin-like protein from fleshy prawn (Fenneropenaeus chinensis). Mol Immunol 43:1633–1644. https://doi.org/10.1016/j.molimm.2005.09.018

    CAS  Article  PubMed  Google Scholar 

  8. Du L, Zhao X, Liang X, Gao X, Liu Y, Wang G (2018) Identification of candidate chemosensory genes in Mythimna separata by transcriptomic analysis. BMC Genomics 19:518. https://doi.org/10.1186/s12864-018-4898-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Fan J, Francis F, Liu Y, Chen JL, Cheng DF (2011) An overview of odorant-binding protein functions in insect peripheral olfactory reception. Genet Mol Res 10:3056–3069. https://doi.org/10.4238/2011.December.8.2

    CAS  Article  PubMed  Google Scholar 

  10. Fiedler TJ, Hudder A, McKay SJ, Shivkumar S, Capo TR, Schmale MC, Walsh PJ (2010) The transcriptome of the early life history stages of the California Sea Hare Aplysia californica. Comp Biochem Physiol Part D Genomics Proteomics 5:165–170. https://doi.org/10.1016/j.cbd.2010.03.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Fu N, Wang Q, Shen HL (2013) De novo assembly, gene annotation and marker development using Illumina paired-end transcriptome sequences in celery (Apium graveolens L.). PLoS One 8:e57686. https://doi.org/10.1371/journal.pone.0057686

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Gifford JL, Hunter HN, Vogel HJ (2005) Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci 62:2588–2598. https://doi.org/10.1007/s00018-005-5373-z

    CAS  Article  PubMed  Google Scholar 

  13. Grabherr MG et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. https://doi.org/10.1038/nbt.1883

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Guo Y, He H (2014) Identification and characterization of a goose-type lysozyme from sewage snail Physa acuta fish shellfish. Immunol. 39:321–325. https://doi.org/10.1016/j.fsi.2014.05.029

    CAS  Article  Google Scholar 

  15. He R et al (2017) Molecular characteristics and serodiagnostic potential of chitinase-like protein from Sarcoptes scabiei. Oncotarget 8:83995–84005. https://doi.org/10.18632/oncotarget.21056

    Article  PubMed  PubMed Central  Google Scholar 

  16. Heyland A, Vue Z, Voolstra CR, Medina M, Moroz LL (2011) Developmental transcriptome of Aplysia californica. J Exp Zool B Mol Dev Evol 316B:113–134. https://doi.org/10.1002/jez.b.21383

    CAS  Article  PubMed  Google Scholar 

  17. Hirose T, Sunazuka T, Omura S (2010) Recent development of two chitinase inhibitors, Argifin and Argadin, produced by soil microorganisms. P Jpn Acad B-Phys 86:85–102. https://doi.org/10.2183/pjab.86.85

    CAS  Article  Google Scholar 

  18. Huang Y, Ma F, Wang W, Ren Q (2015) Identification and molecular characterization of a peritrophin-like gene, involved in the antibacterial response in Chinese mitten crab, Eriocheir sinensis. Dev Comp Immunol 50:129–138. https://doi.org/10.1016/j.dci.2015.01.002

    CAS  Article  PubMed  Google Scholar 

  19. Hultmark D, Steiner H, Rasmuson T, Boman HG (1980) Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 106:7–16

    CAS  Article  Google Scholar 

  20. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    CAS  Article  Google Scholar 

  21. Kang SW et al (2016) Transcriptome sequencing and de novo characterization of Korean endemic land snail, Koreanohadra kurodana for functional transcripts and SSR markers. Mol Gen Genomics 291:1999–2014. https://doi.org/10.1007/s00438-016-1233-9

    CAS  Article  Google Scholar 

  22. Kang SW et al (2017) Sequencing and de novo assembly of visceral mass transcriptome of the critically endangered land snail Satsuma myomphala: annotation and SSR discovery. Comp Biochem Phys D 21:77–89. https://doi.org/10.1016/j.cbd.2016.10.004

    CAS  Article  Google Scholar 

  23. Kang K et al (2018) Identification of putative fecundity-related gustatory receptor genes in the brown planthopper Nilaparvata lugens. BMC Genomics 19:970. https://doi.org/10.1186/s12864-018-5391-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Lesoway MP, Abouheif E, Collin R (2016) Comparative transcriptomics of alternative developmental phenotypes in a marine gastropod. J Exp Zool Part B 326:151–167. https://doi.org/10.1002/jez.b.22674

    CAS  Article  Google Scholar 

  25. Li X, Li M, Hou L, Zhang ZY, Pang XM, Li YY (2018) De novo transcriptome assembly and population genetic analyses for an endangered Chinese endemic Acer miaotaiense (Aceraceae). Genes-Basel. 9:378. https://doi.org/10.3390/genes9080378

    CAS  Article  PubMed Central  Google Scholar 

  26. Li Z, Meng M, Li S, Deng B (2019) The transcriptome analysis of Protaetia brevitarsis Lewis larvae. PLoS One 14:e0214001. https://doi.org/10.1371/journal.pone.0214001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Liu NY, Li ZB, Zhao N, Song QS, Zhu JY, Yang B (2018) Identification and characterization of chemosensory gene families in the bark beetle, Tomicus yunnanensis. Comp Biochem Physiol Part D Genomics Proteomics 25:73–85. https://doi.org/10.1016/j.cbd.2017.11.003

    CAS  Article  PubMed  Google Scholar 

  28. Magister S, Kos J (2013) Cystatins in immune system. J Cancer 4:45–56. https://doi.org/10.7150/jca.5044

    CAS  Article  PubMed  Google Scholar 

  29. Moroz LL et al (2006) Neuronal transcriptome of Aplysia: neuronal compartments and circuitry. Cell 127:1453–1467. https://doi.org/10.1016/j.cell.2006.09.052

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Mutz KO, Heilkenbrinker A, Lonne M, Walter JG, Stahl F (2013) Transcriptome analysis using next-generation sequencing. Curr Opin Biotechnol 24:22–30. https://doi.org/10.1016/j.copbio.2012.09.004

    CAS  Article  PubMed  Google Scholar 

  31. Parmakelis A, Kotsakiozi P, Kontos CK, Adamopoulos PG, Scorilas A (2017) The transcriptome of a “sleeping” invader: de novo assembly and annotation of the transcriptome of aestivating Cornu aspersum. BMC Genomics 18:491. https://doi.org/10.1186/s12864-017-3885-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Pelosi P, Iovinella I, Zhu J, Wang G, Dani FR (2018) Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects. Biol Rev Camb Philos Soc 93:184–200. https://doi.org/10.1111/brv.12339

    Article  PubMed  Google Scholar 

  33. Tagai C, Morita S, Shiraishi T, Miyaji K, Iwamuro S (2011) Antimicrobial properties of arginine- and lysine-rich histones and involvement of bacterial outer membrane protease T in their differential mode of actions. Peptides 32:2003–2009. https://doi.org/10.1016/j.peptides.2011.09.005

    CAS  Article  PubMed  Google Scholar 

  34. Tellam RL, Wijffels G, Willadsen P (1999) Peritrophic matrix proteins. Insect Biochem Mol Biol 29:87–101

    CAS  Article  Google Scholar 

  35. Tian Z et al (2018) Antennal transcriptome analysis of the chemosensory gene families in Carposina sasakii (Lepidoptera: Carposinidae). BMC Genomics 19:544. https://doi.org/10.1186/s12864-018-4900-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Tonk M, Vilcinskas A, Rahnamaeian M (2016) Insect antimicrobial peptides: potential tools for the prevention of skin cancer. Appl Microbiol Biotechnol 100:7397–7405. https://doi.org/10.1007/s00253-016-7718-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Venthur H, Zhou JJ (2018) Odorant receptors and odorant-binding proteins as insect pest control targets: a comparative analysis front. Physiol. 9:1163. https://doi.org/10.3389/fphys.2018.01163

    Article  Google Scholar 

  38. Vogt RG et al (2009) The insect SNMP gene family insect. Biochem Molec 39:448–456. https://doi.org/10.1016/j.ibmb.2009.03.007

    CAS  Article  Google Scholar 

  39. Vosshall LB, Hansson BS (2011) A unified nomenclature system for the insect olfactory coreceptor. Chem Senses 36:497–498. https://doi.org/10.1093/chemse/bjr022

    Article  PubMed  Google Scholar 

  40. Wang W, Hui JHL, Chan TF, Chu KH (2014) De novo transcriptome sequencing of the snail echinolittorina malaccana: identification of genes responsive to thermal stress and development of genetic markers for population studies. Mar Biotechnol 16:547–559. https://doi.org/10.1007/s10126-014-9573-0

    CAS  Article  PubMed  Google Scholar 

  41. Wu Q, Patocka J, Kuca K (2018) Insect antimicrobial peptides, a mini review. Toxins (Basel) 10. https://doi.org/10.3390/toxins10110461

  42. Yi HY, Chowdhury M, Huang YD, Yu XQ (2014) Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol 98:5807–5822. https://doi.org/10.1007/s00253-014-5792-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Yi X, Qi J, Zhou X, Hu MY, Zhong GH (2017) Differential expression of chemosensory-protein genes in midguts in response to diet of Spodoptera litura. Sci Rep 7:296. https://doi.org/10.1038/s41598-017-00403-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14. https://doi.org/10.1186/gb-2010-11-2-r14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Yuvaraj JK, Andersson MN, Zhang DD, Lofstedt C (2018) Antennal transcriptome analysis of the chemosensory gene families from trichoptera and basal lepidoptera. Front Physiol 9:1365. https://doi.org/10.3389/fphys.2018.01365

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang G et al (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature. 490:49–54. https://doi.org/10.1038/nature11413

    CAS  Article  PubMed  Google Scholar 

  47. Zhang L, Li L, Zhu Y, Zhang G, Guo X (2014) Transcriptome analysis reveals a rich gene set related to innate immunity in the Eastern oyster (Crassostrea virginica). Mar Biotechnol (NY) 16:17–33. https://doi.org/10.1007/s10126-013-9526-z

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by The National Natural Science Foundation of China (grant number: 81703475).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhongjie Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal collection and utility protocols were approved by the Henan University of Science and Technology of Biology Animal Use Ethics Committee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by: Maciej Szydlowski

Electronic supplementary material

ESM 1

(XLSX 11 kb)

ESM 2

(FASTA 83418 kb)

ESM 3

(XLSX 28683 kb)

ESM 4

(XLSX 19 kb)

ESM 5

(XLSX 10 kb)

ESM 6

(XLSX 15 kb)

ESM 7

(XLSX 15 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yuan, Y., Meng, M. et al. De novo transcriptome of the whole-body of the gastropod mollusk Philomycus bilineatus, a pest with medical potential in China. J Appl Genetics (2020). https://doi.org/10.1007/s13353-020-00566-4

Download citation

Keywords

  • Philomycus bilineatus
  • Transcriptome
  • RNA sequencing, olfactory genes
  • Antimicrobial peptide/protein genes