Advertisement

Journal of Applied Genetics

, Volume 59, Issue 2, pp 179–185 | Cite as

Diagnostic efficacy and new variants in isolated and complex autism spectrum disorder using molecular karyotyping

  • Luca Lovrečić
  • Polona Rajar
  • Marija Volk
  • Sara Bertok
  • Barbara Gnidovec Stražišar
  • Damjan Osredkar
  • Maja Jekovec Vrhovšek
  • Borut Peterlin
Human Genetics • Original Paper
  • 210 Downloads

Abstract

Autism spectrum disorder (ASD) is a group of the neurodevelopment disorders presenting as an isolated ASD or more complex forms, where a broader clinical phenotype comprised of developmental delay and intellectual disability is present. Both the isolated and complex forms have a significant causal genetic component and submicroscopic genomic copy number variations (CNV) are the most common identifiable genetic factor in these patients. The data on microarray testing in ASD cohorts are still accumulating and novel loci are often identified; therefore, we aimed to evaluate the diagnostic efficacy of the method and the relevance of implementing it into routine genetic testing in ASD patients. A genome-wide CNV analysis using the Agilent microarrays was performed in a group of 150 individuals with an isolated or complex ASD. Altogether, 11 (7.3%) pathogenic CNVs and 15 (10.0%) variants of unknown significance (VOUS) were identified, with the highest proportion of pathogenic CNVs in the subgroup of the complex ASD patients (14.3%). An interesting case of previously unreported partial UPF3B gene deletion was identified among the pathogenic CNVs. Among the CNVs with unknown significance, four VOUS involved genes with possible correlation to ASD, namely genes SNTG2, PARK2, CADPS2 and NLGN4X. The diagnostic efficacy of aCGH in our cohort was comparable with those of the previously reported and identified an important proportion of genetic ASD cases. Despite the continuum of published studies on the CNV testing in ASD cohorts, a considerable number of VOUS CNVs is still being identified, namely 10.0% in our study.

Keywords

Autism spectrum disorders ASD Microarrays Molecular karyotyping UPF3B gene Genetics of autism 

Abbreviations

aCGH

array comparative genomic hybridization

ASD

autism spectrum disorder(s)

CNV

copy number variant

VOUS

variant of unknown significance

Notes

Authors’ contributions

LL, MV, SB, BGS, DO and MJV carried out the clinical evaluation and provided the clinical genetic consultations to patients. LL and PR analysed and interpreted the data. LL, PR, MV and BP drafted the manuscript. SB, BGS, MJV and DO critically revised the final manuscript. All authors read and approved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The study was approved by the National Ethical Review Board in Ljubljana, Slovenia (0120-288/2016-2). All participants (their legal representatives) signed a written, informed consent.

References

  1. An Y, Amr SS, Torres A, Weissman L, Raffalli P, Cox G, Sheng X, Lip V, Bi W, Patel A, Stankiewicz P, Wu BL, Shen Y (2013) SOX12 and NRSN2 are candidate genes for 20p13 subtelomeric deletions associated with developmental delay. Am J Med Genet B Neuropsychiatr Genet 162B(8):832–840CrossRefPubMedGoogle Scholar
  2. Battaglia A, Doccini V, Bernardini L, Novelli A, Loddo S, Capalbo A, Filippi T, Carey JC (2013) Confirmation of chromosomal microarray as a first-tier clinical diagnostic test for individuals with developmental delay, intellectual disability, autism spectrum disorders and dysmorphic features. Eur J Paediatr Neurol 17(6):589–599CrossRefPubMedGoogle Scholar
  3. Bonora E, Graziano C, Minopoli F, Bacchelli E, Magini P, Diquigiovanni C, Lomartire S, Bianco F, Vargiolu M, Parchi P, Marasco E, Mantovani V, Rampoldi L, Trudu M, Parmeggiani A, Battaglia A, Mazzone L, Tortora G, IMGSAC ME, Seri M, Romeo G (2014) Maternally inherited genetic variants of CADPS2 are present in autism spectrum disorders and intellectual disability patients. EMBO Mol Med 6(6):795–809PubMedPubMedCentralGoogle Scholar
  4. Cobben JM, Weiss MM, van Dijk FS, De Reuver R, de Kruiff C, Pondaag W, Hennekam RC, Yntema HG (2014) A de novo mutation in ZMYND11, a candidate gene for 10p15.3 deletion syndrome, is associated with syndromic intellectual disability. Eur J Med Genet 57:636–638CrossRefPubMedGoogle Scholar
  5. Egger G, Roetzer KM, Noor A, Lionel AC, Mahmood H, Schwarzbraun T, Boright O, Mikhailov A, Marshall CR, Windpassinger C, Petek E, Scherer SW, Kaschnitz W, Vincent JB (2014) Identification of risk genes for autism spectrum disorder trough copy number variations analysis in Austrian families. Neurogenetics 15(2):117–127CrossRefPubMedGoogle Scholar
  6. Elsabbagh M, Divan G, Koh YJ, Kim YS, Kauchali S, Marcín C, Montiel-Nava C, Patel V, Paula CS, Wang C, Yasamy MT, Fombonne E (2012) Global prevalence of autism and other pervasive developmental disorders. Autism Res 5(3):160–179CrossRefPubMedPubMedCentralGoogle Scholar
  7. Jamain S, Quach H, Betancur C, Råstam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C, Bourgeron T (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34(1):27–29CrossRefPubMedPubMedCentralGoogle Scholar
  8. Jolly LA, Homan CC, Jacob R, Barry S, Gecz J (2013) The UPF3B gene, implicated in intellectual disability, autism, ADHD and childhood onset schizophrenia regulates neural progenitor cell behaviour and neuronal outgrowth. Hum Mol Genet 22(23):4673–4687CrossRefPubMedGoogle Scholar
  9. Kearney HM, Thorland EC, Brown KK, Quintero-Rivera F, South ST, A working group of the American college of medical genetics ACMG laboratory quality assurance committee (2011) American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet Med 13(7):680–685CrossRefPubMedGoogle Scholar
  10. Laumonnier F, Shoubridge C, Antar C, Nguyen LS, Van Esch H, Kleefstra T, Briault S, Fryns JP, Hamel B, Chelly J, Ropers HH, Ronce N, Blesson S, Moraine C, Gecz J, Raynaud M (2010) Mutations of the UPF3B gene, which encodes a protein widely expressed in neurons, are associated with nonspecific mental retardation with or without autism. Mol Psychiatry 15(7):767–776CrossRefPubMedGoogle Scholar
  11. Luo M, Fan J, Wenger TL, Harr MH, Racobaldo M, Mulchandani S, Dubbs H, Zackai EH, Spinner NB, Conlin LK (2017) CMIP haploinsufficiency in two patients with autism spectrum disorder and co-occurring gastrointestinal issues. Am J Med Genet A 173(8):2101–2107CrossRefPubMedGoogle Scholar
  12. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP et al (2010) Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 86(5):749–764CrossRefPubMedPubMedCentralGoogle Scholar
  13. Roberts JL, Hovanes K, Dasouki M, Manzardo AM, Butler MG (2014) Chromosomal microarray analysis of consecutive individuals with autism Spectrum disorders or learning disability presenting for genetic services. Gene 535(1):70–78CrossRefPubMedGoogle Scholar
  14. Ross JL, Tartaglia N, Merry DE, Dalva M, Zinn AR (2015) Behavioral phenotypes in males with XYY and possible role of increased NLGN4Y expression in autism features. Genes Brain Behav 14(2):137–144CrossRefPubMedPubMedCentralGoogle Scholar
  15. Rosti RO, Sadek AA, Vaux KK, Gleeson JG (2014) The genetic landscape of autism spectrum disorders. Dev Med Child Neurol 56(1):12–18CrossRefPubMedGoogle Scholar
  16. Sadakata T, Shinoda Y, Oka M, Sekine Y, Furuichi T (2013) Autistic-like behavioral phenotypes in a mouse model with copy number variation of the CAPS2/CADPS2 gene. FEBS Lett 587(1):54–59CrossRefPubMedGoogle Scholar
  17. Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, Moreno-De-Luca D et al (2011) Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70(5):863–885CrossRefPubMedPubMedCentralGoogle Scholar
  18. Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM, Reichenberg A (2014) The familial risk of autism. JAMA 311(17):1770–1777CrossRefPubMedPubMedCentralGoogle Scholar
  19. Scheuerle A, Wilson K (2011) PARK2 copy number aberrations in two children presenting with autism spectrum disorder: further support of an association and possible evidence for a new microdeletion/microduplication syndrome. Am J Med Genet B Neuropsychiatr Genet 156B(4):413–420CrossRefPubMedGoogle Scholar
  20. Shen Y, Dies KA, Holm IA, Bridgemohan C, Sobeih MM, Caronna EB et al (2010) Clinical genetic testing for patients with autism spectrum disorders. Pediatrics 125(4):e727–e735CrossRefPubMedPubMedCentralGoogle Scholar
  21. Tumiene B, Čiuladaitė Ž, Preikšaitienė E, Mameniškienė R, Utkus A, Kučinskas V (2017) Phenotype comparison confirms ZMYND11 as a critical gene for 10p15.3 microdeletion syndrome. J Appl Genet 58(4):467–474CrossRefPubMedGoogle Scholar
  22. Xu X, Zhang L, Tong P, Xun G, Su W, Xiong Z, Zhu T, Zheng Y, Luo S, Pan Y, Xia K, Hu Z (2013) Exome sequencing identifies UPF3B as the causative gene for a Chinese non-syndrome mental retardation pedigree. Clin Genet 83(6):560–564CrossRefPubMedGoogle Scholar
  23. Yamakawa H, Oyama S, Mitsuhashi H, Sasagawa N, Uchino S, Kohsaka S, Ishiura S (2007) Neuroligins 3 and 4X interact with syntrophin-gamma2, and the interactions are affected by autism-related mutations. Biochem Biophy Res Commun 355(1):41–46CrossRefGoogle Scholar
  24. Yin CL, Chen HI, Li LH, Chien YL, Liao HM, Chou MC, Chou WJ, Tsai WC, Chiu YN, Wu YY, Lo CZ, Wu JY, Chen YT, Gau SS (2016) Genome-wide analysis of copy number variations identifies PARK2 as a candidate gene for autism spectrum disorder. Mol Autism 7:23CrossRefPubMedPubMedCentralGoogle Scholar
  25. Yoshii SR, Kishi C, Ishihara N, Mizushima N (2011) Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem 286(22):19630–19640CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2018

Authors and Affiliations

  1. 1.Clinical Institute of Medical GeneticsUniversity Medical Centre LjubljanaLjubljanaSlovenia
  2. 2.Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, Division of PaediatricsUniversity Medical Centre LjubljanaLjubljanaSlovenia
  3. 3.Department of Child, Adolescent and Developmental Neurology, Division of PaediatricsUniversity Medical Centre LjubljanaLjubljanaSlovenia

Personalised recommendations