Skip to main content
Log in

Remote Sensing of Tropical Cyclone Thermal Structure from Satellite Microwave Sounding Instruments: Impacts of Background Profiles on Retrievals

  • Regular Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

A variational retrieval system often requires background atmospheric profiles and surface parameters in its minimization process. This study investigates the impacts of specific background profiles on retrievals of tropical cyclone (TC) thermal structure. In our Microwave Retrieval Testbed (MRT), the K-means clustering algorithm is utilized to generate a set of mean temperature and water vapor profiles according to stratiform and convective precipitation in hurricane conditions. The Advanced Technology Microwave Sounder (ATMS) observations are then used to select the profiles according to cloud type. It is shown that the cloud-based background profiles result in better hurricane thermal structures retrieved from ATMS observations. Compared to the Global Positioning System (GPS) dropsonde observations, the temperature and specific humidity errors in the TC inner region are less than 3 K and 2.5 g kg–1, respectively, which are significantly smaller than the retrievals without using the cloud-based profiles. Further experiments show that all the ATMS observations could retrieve well both temperature and humidity structures, especially within the inner core region. Thus, both temperature and humidity profiles derived from microwave sounding instruments in hurricane conditions can be reliably used for evaluation of the storm intensity with a high fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennartz, R., A. Thoss, A. Dybbroe, et al., 2002: Precipitation analysis using the Advanced Microwave Sounding Unit in support of nowcasting applications. Meteor. Appl., 9: 177–189, doi: 10.1017/S1350482702002037.

    Article  Google Scholar 

  • Bormann, N., A. Fouilloux, and W. Bell, 2013: Evaluation and assimilation of ATMS data in the ECMWF system. J. Geophys. Res. Atmos., 118: 12970–12980, doi: 10.1002/2013JD020325.

    Article  Google Scholar 

  • Boukabara, S.-A., K. Garrett, W. C. Chen, et al., 2011: MiRS: An all-weather 1DVAR satellite data assimilation and retrieval system. IEEE Trans. Geosci. Remote Sens., 49: 3249–3272, doi: 10.1109/TGRS.2011.2158438.

    Article  Google Scholar 

  • Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70: 146–162, doi: 10.1175/jas-d-12-062.1.

    Google Scholar 

  • Chen, H., D.-L. Zhang, J. Carton, et al., 2011: On the rapid intensification of Hurricane Wilma (2005). Part I: Model prediction and structural changes. Wea. Forecasting, 26: 885–901, doi: 10.1175/waf-d-11-00001.1.

    Google Scholar 

  • Geer, A. J., P. Bauer, and P. Lopez, 2008: Lessons learnt from the operational 1D + 4D-Var assimilation of rain-and cloud-affected SSM/I observations at ECMWF. Quart. J. Roy. Meteor. Soc., 134: 1513–1525, doi: 10.1002/qj.304.

    Article  Google Scholar 

  • Grody, N., J. Zhao, R. Ferraro, et al., 2001: Determination of precipitable water and cloud liquid water over oceans from the NOAA 15 Advanced Microwave Sounding Unit. J. Geophys. Res. Atmos., 106: 2943–2953, doi: 10.1029/2000JD900616.

    Article  Google Scholar 

  • Han, Y., and F. Z. Weng, 2018: Remote sensing of tropical cyclone thermal structure from satellite microwave sounding instruments: Impacts of optimal channel selection on retrievals. J. Meteor. Res., 32: 804–818, doi: 10.1007/s13351-018-8005-x.

    Article  Google Scholar 

  • Hawkins, H. F., and D. T. Rubsam, 1968: Hurricane Hilda, 1964: II. Structure and budgets of the hurricane on October 1: 1964. Mon. Wea. Rev., 96: 617–636, doi: 10.1175/1520-0493(1968) 096<0617:hh>2.0.co;2.

    Google Scholar 

  • Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense hurricane—Inez 1966. Mon. Wea. Rev., 104: 418–442, doi: 10.1175/1520-0493(1976)104<0418:tsoasi>2.0. co;2.

    Article  Google Scholar 

  • Houze, R. A., Jr., 2014: Cloud Dynamics. 2nd ed. Elsevier/Academic Press, Oxford, 432 pp.

    Google Scholar 

  • JPSS ATMS SDR Science Team, 2013: Joint Polar Satellite System (JPSS) Advanced Technology Microwave Sounder (ATMS) SDR Calibration Algorithm Theoretical Basis Document (ATBD). E/RA-00001, Center for Satellite Applications and Research, Maryland, 41 pp. Available at www.star.nesdis.noaa.gov/jpss/documents/ATBD. Accessed on 28 December 2018.

    Google Scholar 

  • Knaff, J. A., R. M. Zehr, M. D. Goldberg, et al., 2000: An example of temperature structure differences in two cyclone systems derived from the Advanced Microwave Sounder Unit. Wea. Forecasting, 15: 476–483, doi: 10.1175/1520-0434(2000)015<0476:AEOTSD>2.0.CO;2.

    Article  Google Scholar 

  • Knaff, J. A., S. A. Seseske, M. DeMaria, et al., 2004: On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU. Mon. Wea. Rev., 132: 2503–2510, doi: 10.1175/1520-0493(2004)132<2503:OTIOVW> 2.0.CO;2.

    Article  Google Scholar 

  • LaSeur, N. E., and H. F. Hawkins, 1963: An analysis of Hurricane Cleo (1958) based on data from research reconnaissance aircraft. Mon. Wea. Rev., 91: 694–709, doi: 10.1175/1520-0493(1963)091<0694:aaohcb>2.3.co;2.

    Article  Google Scholar 

  • Lin, L., and F. Z. Weng, 2018: Estimation of hurricane maximum wind speed using temperature anomaly derived from Advanced Technology Microwave Sounder. IEEE Geosci. Remote Sens. Lett., 15: 639–643, doi: 10.1109/LGRS.2018. 2807763.

    Article  Google Scholar 

  • Liu, Q. H., and F. Z. Weng, 2005: One-dimensional variational retrieval algorithm of temperature, water vapor, and cloud water profiles from Advanced Microwave Sounding Unit (AMSU). IEEE Trans. Geosci. Remote Sens., 43: 1087–1095, doi: 10.1109/TGRS.2004.843211.

    Article  Google Scholar 

  • Lloyd, S., 1982: Least squares quantization in PCM. IEEE Trans. Inf. Theory, 28: 129–137, doi: 10.1109/TIT.1982.1056489.

    Article  Google Scholar 

  • Matricardi, M., F. Chevallier, G. Kelly, et al., 2004: An improved general fast radiative transfer model for the assimilation of radiance observations. Quart. J. Roy. Meteor. Soc., 130: 153–173, doi: 10.1256/qj.02.181.

    Article  Google Scholar 

  • Saunders, R., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc., 125: 1407–1425, doi: 10.1002/qj.1999.49712555615.

    Article  Google Scholar 

  • Stern, D. P., and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69: 1657–1680, doi: 10.1175/jas-d-11-010.1.

    Article  Google Scholar 

  • Stern, D. P., and F. Q. Zhang, 2016: The warm-core structure of Hurricane Earl (2010). J. Atmos. Sci., 73: 3305–3328, doi: 10.1175/jas-d-15-0328.1.

    Article  Google Scholar 

  • Tian, X. X., and X. L. Zou, 2016: ATMS-and AMSU-A-derived hurricane warm core structures using a modified retrieval algorithm. J. Geophys. Res. Atmos., 121: 12630–12646, doi: 10.1002/2016JD025042.

    Article  Google Scholar 

  • Wang, R., and Y. F. Fu, 2017: Structural characteristics of atmospheric temperature and humidity inside clouds of convective and stratiform precipitation in the rainy season over East Asia. J. Meteor. Res., 31: 890–905, doi: 10.1007/s13351-017-7038-x.

    Article  Google Scholar 

  • Weng, F. Z., X. L. Zou, N. H. Sun, et al., 2013: Calibration of Suomi national polar-orbiting partnership advanced technology microwave sounder. J. Geophys. Res. Atmos., 118: 11,187–11,200, doi: 10.1002/jgrd.50840.

    Article  Google Scholar 

  • Zhu, T., and F. Z. Weng, 2013: Hurricane Sandy warm-core structure observed from Advanced Technology Microwave Sounder. Geophys. Res. Lett., 40: 3325–3330, doi: 10.1002/grl.50626.

    Article  Google Scholar 

  • Zhu, T., D.-L. Zhang, and F. Z. Weng, 2002: Impact of the advanced microwave sounding unit measurements on hurricane prediction. Mon. Wea. Rev., 130: 2416–2432, doi: 10.1175/1520-0493(2002)130<2416:iotams>2.0.co;2.

    Article  Google Scholar 

  • Zou, X., F. Weng, B. Zhang, et al., 2013: Impacts of assimilation of ATMS data in HWRF on track and intensity forecasts of 2012 four landfall hurricanes. J. Geophys. Res. Atmos., 118: 11,558–11,576, doi: 10.1002/2013JD020405.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuzhong Weng.

Additional information

Supported by the National Basic Research and Development (973) Program (2015CB452805) and National Key Research and Development Program of China (2018YFC1506500).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Weng, F., Han, Y. et al. Remote Sensing of Tropical Cyclone Thermal Structure from Satellite Microwave Sounding Instruments: Impacts of Background Profiles on Retrievals. J Meteorol Res 33, 89–103 (2019). https://doi.org/10.1007/s13351-019-8094-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-019-8094-1

Key words

Navigation