Skip to main content
Log in

Boreal Summer Intraseasonal Oscillation in the Asian–Pacific Monsoon Region Simulated in CAMS-CSM

  • Special Collection on CAMS-CSM
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

The boreal summer intraseasonal oscillation (BSISO) is simulated by the Climate System Model (CSM) developed at the Chinese Academy of Meteorological Sciences (CAMS), China Meteorological Administration. Firstly, the results indicate that this new model is able to reasonably simulate the annual cycle and seasonal mean of the precipitation, as well as the vertical shear of large-scale zonal wind in the tropics. The model also reproduces the eastward and northward propagating oscillation signals similar to those found in observations. The simulation of BSISO is generally in agreement with the observations in terms of variance center, periodicity, and propagation, with the exception that the magnitude of BSISO anomalous convections are underestimated during both its eastward propagation along the equator and its northward propagation over the Asian–Pacific summer monsoon region. Our preliminary evaluation of the simulated BSISO by CAMS-CSM suggests that this new model has the capability, to a certain extent, to capture the BSISO features, including its propagation zonally along the equator and meridionally over the Asian monsoon region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajayamohan, R. S., and B. N. Goswami, 2007: Dependence of simulation of boreal summer tropical intraseasonal oscillations on the simulation of seasonal mean. J. Atmos. Sci., 64: 460–478, doi: 10.1175/JAS3844.1.

    Article  Google Scholar 

  • Benedict, J. J., E. D. Maloney, A. H. Sobel, et al., 2014: Gross moist stability and MJO simulation skill in three full-physics GCMs. J. Atmos. Sci., 71: 3327–3349, doi: 10.1175/JAS-D-13-0240.1.

    Article  Google Scholar 

  • Cao, J., B. Wang, B. Xiang, et al., 2015: Major modes of shortterm climate variability in the newly developed NUIST Earth System Model (NESM). Adv. Atmos. Sci., 32: 585–600, doi: 10.1007/s00376-014-4200-6.

    Article  Google Scholar 

  • DeMott, C. A., C. Stan, and D. A. Randall, 2013: Northward propagation mechanisms of the boreal summer intraseasonal oscillation in the ERA-Interim and SP-CCSM. J. Climate, 26: 1973–1992, doi: 10.1175/JCLI-D-12-00191.1.

    Article  Google Scholar 

  • Flatau, M., P. J. Flatau, P. Phoebus, et al., 1997: The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. J. Atmos. Sci., 54: 2373–2386, doi: 10.1175/1520-0469(1997)054<2373:TFBECA>2.0.CO;2.

    Article  Google Scholar 

  • Fu, X. H., and B. Wang, 2001: A coupled modeling study of the seasonal cycle of the Pacific cold tongue. Part I: Simulation and sensitivity experiments. J. Climate, 14: 765–779, doi: 10.1175/1520-0442(2001)014<0765:ACMSOT>2.0.CO;2.

    Google Scholar 

  • Fu, X. H., and B. Wang, 2004: Differences of boreal summer intraseasonal oscillations simulated in an atmosphere–ocean coupled model and an atmosphere-only model. J. Climate, 17: 1263–1271, doi: 10.1175/1520-0442(2004)017<1263:DOBSIO> 2.0.CO;2.

    Article  Google Scholar 

  • Griffies, S. M., M. J. Harrison, P. C. Pacanowski, et al., 2004: A Technical Guide to MOM4. GFDL Ocean Group Technical Report No. 5: 339 pp.

    Google Scholar 

  • Gualdi, S., and A. Navarra, 1998: A study of the seasonal variability of the tropical intraseasonal oscillation. Global Atmos. Ocean Syst., 6: 337–372.

    Google Scholar 

  • Gualdi, S., A. Navarra, and H. von Storch, 1997: Tropical intraseasonal oscillation appearing in operational analyses and in a family of general circulation models. J. Atmos Sci., 54: 1185–1202, doi: 10.1175/1520-0469(1997)054<1185:TIOA IO>2.0.CO;2.

    Article  Google Scholar 

  • Gualdi, S., A. Navarra, and M. Fischer, 1999: The tropical intraseasonal oscillation in a coupled ocean–atmosphere general circulation model. Geophys. Res. Lett., 26: 2973–2976, doi: 10.1029/1999GL010414.

    Article  Google Scholar 

  • Hayashi, Y., 1982: Space–time spectral analysis and its applications to atmospheric waves. J. Meteor. Soc. Japan, 60: 156–171, doi: 10.2151/jmsj1965.60.1_156.

    Article  Google Scholar 

  • Hendon, H. H., 2000: Impact of air–sea coupling on the Madden-Julian Oscillation in a general circulation model. J. Atmos. Sci., 57: 3939–3952, doi: 10.1175/1520-0469(2001)058<3939: IOASCO>2.0.CO;2.

    Article  Google Scholar 

  • Hendon, H. H, C. D. Zhang, and J. D. Glick, 1999: Interannual variation of the Madden–Julian Oscillation during austral summer. J. Climate, 12: 2538–2550, doi: 10.1175/1520-0442(1999)012<2538:IVOTMJ>2.0.CO;2.

    Article  Google Scholar 

  • Hsu, H.-H., B. J. Hoskins, and F.-F. Jin, 1990: The 1985/86 intraseasonal oscillation and the role of the extratropics. J. Atmos. Sci., 47: 823–839, doi: 10.1175/1520-0469(1990)047<08 23:TIOATR>2.0.CO;2.

    Article  Google Scholar 

  • Hsu, P.-C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25: 4914–4931, doi: 10.1175/JCLI-D-11-00310.1.

    Article  Google Scholar 

  • Hsu, P.-C., and Y. Yang, 2016: Contribution of atmospheric internal processes to the interannual variability of the South Asian summer monsoon. Int. J. Climatol., 36: 2917–2930, doi: 10.1002/joc.4528.

    Article  Google Scholar 

  • Hsu, P.-C., Z. Fu, and T. Xiao, 2018: Energetic processes regulating the strength of MJO circulation over the Maritime continent during two types of El Niño. Atmos. Ocean. Sci. Lett., 11: 112–119, doi: 10.1080/16742834.2018.1399049.

    Article  Google Scholar 

  • Inness, P. M., J. M. Slingo, E. Guilyardi, et al., 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Climate, 16: 365–382, doi: 10.1175/1520-0442(2003)016<0365:SOTMJO> 2.0.CO;2.

    Google Scholar 

  • Ji, D., L. Wang, J. Feng, et al., 2014: Description and basic evaluation of BNU-ESM version 1. Geosci. Model Dev. Discuss., 7: 1601–1647, doi: 10.5194/gmdd-7-1601-2014.

    Article  Google Scholar 

  • Jia, X. L., C. Y. Li, N. F. Zhou, et al., 2010: The MJO in an AGCM with three different cumulus parameterization schemes. Dyn. Atmos. Oceans, 49: 141–163, doi: 10.1016/j. dynatmoce.2009.02.003.

    Article  Google Scholar 

  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17: 1022–1039, doi: 10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    Article  Google Scholar 

  • Jiang, X., D. E. Waliser, P. K. Xavier, et al., 2015: Vertical structure and physical processes of the Madden–Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120: 4718–4748, doi: 10.1002/2014JD 022375.

    Article  Google Scholar 

  • Kemball-Cook, S., and B. Wang, 2001: Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14: 2923–2942, doi: 10.1175/1520-0442(2001) 014<2923:EWAASI>2.0.CO;2.

    Article  Google Scholar 

  • Kemball-Cook, S., B. Wang, and X. Fu, 2002: Simulation of the intraseasonal oscillation in the ECHAM-4 Model: The impact of coupling with an ocean model. J. Atmos. Sci., 59: 1433–1453, doi: 10.1175/1520-0469(2002)059<1433:SOTI OI>2.0.CO;2.

    Article  Google Scholar 

  • Lau, K.-M., and P. H. Chan, 1986: Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114: 1354–1367, doi:1 0.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2.

    Article  Google Scholar 

  • Lau, W. K. M., and D. E. Waliser, 2005: Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer, Heidelberg, Germany, 474 pp.

    Google Scholar 

  • Lee, J.-Y., B. Wang, M. C. Wheeler, et al., 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40: 493–509, doi: 10.1007/s00382-012-1544-4.

    Article  Google Scholar 

  • Li, C. Y., J. Ling, J. Song, et al., 2014: Research progress in China on the tropical atmospheric intraseasonal oscillation. J. Meteor. Res., 28: 671–692, doi: 10.1007/s13351-014-4015-5.

    Article  Google Scholar 

  • Li, J., H. M. Chen, X. Y. Rong, et al., 2018: How well can a climate model simulate an extreme precipitation event: A case study using the Transpose-AMIP experiment. J. Climate, 31: 6543–6556, doi: 10.1175/JCLI-D-17-0801.1.

    Article  Google Scholar 

  • Li, T., 2014: Recent advance in understanding the dynamics of the Madden–Julian oscillation. J. Meteor. Res., 28: 1–33, doi: 10. 1007/s13351-014-3087-6.

    Google Scholar 

  • Li, W., Y. J. Zhu, X. Q. Zhou, et al., 2018: Evaluating the MJO prediction skill from different configurations of NCEP GEFS extended forecast. Climate Dyn. doi: 10.1007/s00382-018-4423-9.

    Google Scholar 

  • Lin, A. L., and T. Li, 2008: Energy spectrum characteristics of boreal summer intraseasonal oscillations: Climatology and variations during the ENSO developing and decaying phases. J. Climate, 21: 6304–6320, doi: 10.1175/2008JCLI2331.1.

    Article  Google Scholar 

  • Lin, A. L., T. Li, X. H. Fu, et al., 2011: Effects of air–sea coupling on the boreal summer intraseasonal oscillations over the tropical Indian Ocean. Climate Dyn., 37: 2303–2322, doi: 10.1007/s00382-010-0943-7.

    Article  Google Scholar 

  • Ling, J., C. D. Zhang, and P. Bechtold, 2013: Large-scale distinctions between MJO and non-MJO convective initiation over the tropical Indian Ocean. J. Atmos. Sci., 70: 2696–2712, doi: 10.1175/JAS-D-13-029.1.

    Article  Google Scholar 

  • Liu, F., and B. Wang, 2013: An air–sea coupled skeleton model for the Madden–Julian oscillation. J. Atmos. Sci., 70: 3147–3156, doi: 10.1175/JAS-D-12-0348.1.

    Article  Google Scholar 

  • Liu, F., and B. Wang, 2017: Effects of moisture feedback in a frictional coupled Kelvin–Rossby wave model and implication in the Madden–Julian oscillation dynamics. Climate Dyn., 48: 513–522, doi: 10.1007/s00382-016-3090-y.

    Article  Google Scholar 

  • Liu, F., B. Wang, and I.-S. Kang, 2015: Roles of barotropic convective momentum transport in the intraseasonal oscillation. J. Climate, 28: 4908–4920, doi: 10.1175/JCLI-D-14-00575.1.

    Article  Google Scholar 

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28: 702–708, doi: 10.1175/1520-0469(1971)028<0702: DOADOI>2.0.CO;2.

    Article  Google Scholar 

  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29: 1109–1123, doi: 10.1175/1520-0469(1972)029<11 09:DOGSCC>2.0.CO;2.

    Article  Google Scholar 

  • Neena, J. M., D. Waliser, and X. Jiang, 2017: Model performance metrics and process diagnostics for boreal summer intraseasonal variability. Climate Dyn., 48: 1661–1683, doi: 10.1007/s00382-016-3166-8.

    Article  Google Scholar 

  • Nordeng, T. E., 1994: Extended Versions of the Convective Parameterization Scheme at ECMWF and Their Impact on the Mean and Transient Activity of the Model in the Tropics. Technical Memorandum 206, ECMWF, Reading, UK. 41 pp.

    Google Scholar 

  • Qi, Y. J., R. H. Zhang, T. Li, et al., 2008: Interactions between the summer mean monsoon and the intraseasonal oscillation in the Indian monsoon region. Geophys. Res. Lett., 35, L17704, doi: 10.1029/2008GL034517.

    Article  Google Scholar 

  • Qi, Y. J., R. H. Zhang, P. Zhao, et al., 2013: Comparison of the structure and evolution of intraseasonal oscillations before and after onset of the Asian summer monsoon. Acta Meteor. Sinica, 27: 684–700, doi: 10.1007/s13351-013-0511-2.

    Article  Google Scholar 

  • Ren, H.-L., J. Wu, C.-B. Zhao, et al., 2016: MJO ensemble prediction in BCC-CSM1.1(m) using different initialization schemes. Atmos. Ocean. Sci. Lett., 9: 60–65, doi: 10.1080/16 742834.2015.1116217.

    Article  Google Scholar 

  • Roeckner, E., G. Bäuml, L. Bonaventura, et al., 2003: The Atmospheric General Circulation Model ECHAM 5. Part I: Model Description. Rep. No. 349, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 127 pp.

    Google Scholar 

  • Rong, X. Y., J. Li, H. M. Chen, et al., 2018: The CAMS climate system model and a basic evaluation of its climatology and climate variability simulation. J. Meteor. Res., 32: 839–861, doi: 10.1007/s13351-018-8058-x.

    Article  Google Scholar 

  • Sabeerali, C. T., A. Ramu Dandi, A. Dhakate, et al., 2013: Simulation of boreal summer intraseasonal oscillations in the latest CMIP5 coupled GCMs. J. Geophys. Res. Atmos., 118: 4401–4420, doi: 10.1002/jgrd.50403.

    Article  Google Scholar 

  • Salby, M. L., and H. H. Hendon, 1994: Intraseasonal behavior of clouds, temperature, and motion in the tropics. J. Atmos. Sci., 51: 2207–2224, doi: 10.1175/1520-0469(1994)051<2207:IBOC TA>2.0.CO;2.

    Article  Google Scholar 

  • Slingo, J. M., K. R. Sperber, J. S. Boyle, et al., 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12: 325–357, doi: 10.1007/BF00231106.

    Article  Google Scholar 

  • Sperber, K. R., and H. Annamalai, 2008: Coupled model simulations of boreal summer intraseasonal (30–50 day) variability, Part 1: Systematic errors and caution on use of metrics. Climate Dyn., 31: 345–372, doi: 10.1007/s00382-008-0367-9.

    Article  Google Scholar 

  • Sperber, K. R., S. Gualdi, S. Legutke, et al., 2005: The Madden–Julian oscillation in ECHAM4 coupled and uncoupled general circulation models. Climate Dyn., 25: 117–140, doi: 10.1007/s00382-005-0026-3.

    Article  Google Scholar 

  • Teng, H. Y., and B. Wang, 2003: Interannual variations of the boreal summer intraseasonal oscillation in the Asian–Pacific region. J. Climate, 16: 3572–3584, doi: 10.1175/1520-0442(2003)016<3572:IVOTBS>2.0.CO;2.

    Article  Google Scholar 

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117: 1779–1800, doi: 10.1175/1520-0493(1989)117<1779:AC MFSF>2.0.CO;2.

    Article  Google Scholar 

  • Waliser, D. E., 2006: Intraseasonal variability. The Asian Monsoon, B. Wang, Ed., Springer, Berlin, 203–257.

    Chapter  Google Scholar 

  • Waliser, D. E., K. M. Lau, and J.-H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden–Julian Oscillation: A model perturbation experiment. J. Atmos. Sci., 56: 333–358, doi: 10.1175/1520-0469(1999)056<0333:TIOCSS> 2.0.CO;2.

    Article  Google Scholar 

  • Waliser, D. E., K. M. Lau, W. Stern, et al., 2003a: Potential predictability of the Madden–Julian Oscillation. Bull. Amer. Meteor. Soc., 84: 33–50, doi: 10.1175/BAMS-84-1-33.

    Article  Google Scholar 

  • Waliser, D. E., K. Jin, I.-S. Kang, et al., 2003b: AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Climate Dyn., 21: 423–446, doi: 10.1007/s00382-003-0337-1.

    Article  Google Scholar 

  • Wang, B., 2005: Theory. Chapter 10 in Intraseasonal variability in the Atmosphere–Ocean Climate System, K. M. Lau and D. E. Waliser, eds, Springer and Praxis, Chichester, UK, 307–351.

    Google Scholar 

  • Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys., 44: 43–61, doi: 10.1007/BF01026810.

    Article  Google Scholar 

  • Wang, B., and X. S. Xie, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci., 53: 449–467, doi: 10.1175/1520-0469(1996)053<0 449:LFEWIV>2.0.CO;2.

    Google Scholar 

  • Wang, B., and X. S. Xie, 1997: A model for the boreal summer intraseasonal oscillations. J. Atmos. Sci., 54: 72–86, doi: 10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2.

    Article  Google Scholar 

  • Wang, B., and X. S. Xie, 1998: Coupled modes of the warm pool climate system. Part I: The role of air–sea interaction in maintaining Madden–Julian oscillation. J. Climate, 11: 2116–2135, doi: 10.1175/1520-0442-11.8.2116.

    Google Scholar 

  • Wang, B., and S.-S. Lee, 2017: MJO propagation shaped by zonal asymmetric structures: Results from 24 GCM simulations. J. Climate, 30: 7933–7952, doi: 10.1175/JCLI-D-16-0873.1.

    Article  Google Scholar 

  • Wang, B., P. Webster, K. Kikuchi, et al., 2006: Boreal summer quasi-monthly oscillation in the global tropics. Climate Dyn., 27: 661–675, doi: 10.1007/s00382-006-0163-3.

    Article  Google Scholar 

  • Wang, B., S.-S. Lee, D. E. Waliser, et al., 2018: Dynamics-oriented diagnostics for the Madden–Julian Oscillation. J. Climate, 31: 3117–3135, doi: 10.1175/JCLI-D-17-0332.1.

    Google Scholar 

  • Wang, L., T. Li, E. Maloney, et al., 2017: Fundamental causes of propagating and non-propagating MJOs in MJOTF/GASS models. J. Climate, 30: 3743–3769, doi: 10.1175/JCLI-D-16-0765.1.

    Article  Google Scholar 

  • Wang, L., T. Li, and T. Nasuno, 2018: Impact of Rossby and Kelvin wave components on MJO eastward propagation. J. Climate, 31: 6913–6931, doi: 10.1175/JCLI-D-17-0749.1.

    Article  Google Scholar 

  • Wang, W. Q., and M. E. Schlesinger, 1999: The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 12: 1423–1457, doi: 10.1175/1520-0442(1999) 012<1423:TDOCPO>2.0.CO;2.

    Article  Google Scholar 

  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118: 877–926, doi: 10.1002/qj.49711850705.

    Article  Google Scholar 

  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56: 374–399, doi1: 0.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    Article  Google Scholar 

  • Wu, M. L. C., S. Schubert, I.-S. Kang, et al., 2002: Forced and free intraseasonal variability over the South Asian monsoon region simulated by 10 AGCMs. J. Climate, 15: 2862–2880, doi: 10.1175/1520-0442(2002)015<2862:FAFIVO>2.0.CO;2.

    Article  Google Scholar 

  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57: 227–242, doi: 10.2151/jmsj1965.57.3_227.

    Article  Google Scholar 

  • Zhang, C. D., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi: 10.1029/2004RG000158.

  • Zhang, C. D., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94: 1849–1870, doi: 10.1175/BAMS-D-12-00026.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Qi.

Additional information

Supported by the National Key Research and Development Program (2016YFA0601504), National Basic Research and Development (973) Program of China (2015CB453203), National Natural Science Foundation of China (41675068), and Basic Research Funds of the Chinese Academy of Meteorological Sciences (2015Z002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Zhang, R., Rong, X. et al. Boreal Summer Intraseasonal Oscillation in the Asian–Pacific Monsoon Region Simulated in CAMS-CSM. J Meteorol Res 33, 66–79 (2019). https://doi.org/10.1007/s13351-019-8080-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-019-8080-7

Key words

Navigation