Skip to main content
Log in

Sensitivity Study of Anthropogenic Aerosol Indirect Forcing through Cirrus Clouds with CAM5 Using Three Ice Nucleation Parameterizations

  • Special Collection on Aerosol-Cloud-Radiation Interactions
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Quantifying the radiative forcing due to aerosol–cloud interactions especially through cirrus clouds remains challenging because of our limited understanding of aerosol and cloud processes. In this study, we investigate the anthropogenic aerosol indirect forcing (AIF) through cirrus clouds using the Community Atmosphere Model version 5 (CAM5) with a state-of-the-art treatment of ice nucleation. We adopt a new approach to isolate anthropogenic AIF through cirrus clouds in which ice nucleation parameterization is driven by prescribed pre-industrial (PI) and presentday (PD) aerosols, respectively. Sensitivities of anthropogenic ice AIF (i.e., anthropogenic AIF through cirrus clouds) to different ice nucleation parameterizations, homogeneous freezing occurrence, and uncertainties in the cloud microphysics scheme are investigated. Results of sensitivity experiments show that the change (PD minus PI) in global annual mean longwave cloud forcing (i.e., longwave anthropogenic ice AIF) ranges from 0.14 to 0.35 W m–2, the change in global annual mean shortwave cloud forcing (i.e., shortwave anthropogenic ice AIF) from–0.47 to–0.20 W m–2, and the change in net cloud forcing from–0.12 to 0.05 W m–2. Our results suggest that different ice nucleation parameterizations are an important factor for the large uncertainty of anthropogenic ice AIF. Furthermore, improved understanding of the spatial and temporal occurrence characteristics of homogeneous freezing events and the mean states of cirrus cloud properties are also important for constraining anthropogenic ice AIF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barahona, D., and A. Nenes, 2009: Parameterizing the competition between homogeneous and heterogeneous freezing in cirrus cloud formation–monodisperse ice nuclei. Atmos. Chem. Phys., 9, 369–381, doi: 10.5194/acp-9-369-2009.

    Article  Google Scholar 

  • Barahona, D., A. Molod, J. Bacmeister, et al.,2014: Development of two-moment cloud microphysics for liquid and ice within the NASA Goddard Earth Observing System Model (GEOS-5). Geosci. Model Dev., 7, 1733–1766, doi: 10.5194/gmd-7-1733-2014.

    Article  Google Scholar 

  • Boucher, O., D. Randall, P. Artaxo, et al.,2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, D. Qin, G. K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom, New York, NY, USA, 571–658.

    Google Scholar 

  • Carslaw, K. S., L. A. Lee, C. L. Reddington, et al.,2013: Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503, 67–71, doi: 10.1038/nature12674.

    Article  Google Scholar 

  • Cziczo, D. J., K. D. Froyd, C. Hoose, et al.,2013: Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science, 340, 1320–1324, doi: 10.1126/science.1234145.

    Article  Google Scholar 

  • Eidhammer, T., H. Morrison, D. Mitchell, et al.,2017: Improvements in global climate model microphysics using a consistent representation of ice particle properties. J. Climate, 30, 609–629, doi: 10.1175/jcli-d-16-0050.1.

    Article  Google Scholar 

  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 1357–1371, doi: 10.1175/JTECH1922.1.

    Article  Google Scholar 

  • Gettelman, A., X. Liu, S. J. Ghan, et al.,2010: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J. Geophys. Res., 115, D18216, doi: 10.1029/2009jd013797.

    Article  Google Scholar 

  • Gettelman, A., X. Liu, D. Barahona, et al.,2012: Climate impacts of ice nucleation. J. Geophys. Res. Atmos., 117, D20201, doi: 10.1029/2012jd017950.

    Article  Google Scholar 

  • Heymsfield, A. J., A. Bansemer, P. R. Field, et al.,2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 3457–3491, doi: 10.1175/1520-0469(2002) 059<3457:oapops>2.0.co;2.

    Article  Google Scholar 

  • Jensen, E. J., L. Pfister, T. P. Bui, et al.,2010: Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus. Atmos. Chem. Phys., 10, 1369–1384, doi: 10.5194/acp-10-1369-2010.

    Article  Google Scholar 

  • Kärcher, B., J. Hendricks, and U. Lohmann, 2006: Physically based parameterization of cirrus cloud formation for use in global atmospheric models. J. Geophys. Res. Atmos., 111, D01205, doi: 10.1029/2005JD006219.

    Article  Google Scholar 

  • Khain, A. P., K. D. Beheng, A. Heymsfield, et al.,2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247–322, doi: 10.1002/2014RG000468.

    Article  Google Scholar 

  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78, 197–208, doi: 10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2.

    Article  Google Scholar 

  • Krämer, M., C. Schiller, A. Afchine, et al.,2009: Ice supersaturations and cirrus cloud crystal numbers. Atmos. Chem. Phys., 9, 3505–3522, doi: 10.5194/acp-9-3505-2009.

    Article  Google Scholar 

  • Lawson, R. P., 2011: Effects of ice particles shattering on optical cloud particle probes. Atmos. Meas. Tech. Discuss., 4, 939–968, doi: 10.5194/amtd-4-939-2011.

    Article  Google Scholar 

  • Li, J.-L. F., D. E. Waliser, W. T. Chen, et al.,2012: An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data. J. Geophys. Res. Atmos., 117, D16105, doi: 10.1029/2012JD017640.

    Google Scholar 

  • Liu, X., and J. E. Penner, 2005: Ice nucleation parameterization for global models. Meteor. Z., 14, 499–514, doi: 10.1127/0941-2948/2005/0059.

    Article  Google Scholar 

  • Liu, X., and X. Shi, 2018: Sensitivity of homogeneous ice nucleation to aerosol perturbations and its implications for aerosol indirect effects through cirrus clouds. Geophys. Res. Lett., 45, 1684–1691, doi: 10.1002/2017GL076721.

    Article  Google Scholar 

  • Liu, X., J. E. Penner, S. J. Ghan, et al.,2007: Inclusion of ice microphysics in the NCAR community atmospheric model version 3 (CAM3). J. Climate, 20, 4526–4547, doi: 10.1175/Jcli4264.1.

    Article  Google Scholar 

  • Liu, X., R. C. Easter, S. J. Ghan, et al.,2012: Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev., 5, 709–739, doi: 10.5194/gmd-5-709-2012.

    Article  Google Scholar 

  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, et al.,2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748–766, doi: 10.1175/2008jcli 2637.1.

    Article  Google Scholar 

  • Morrison, H., and W. W. Grabowski, 2008: A novel approach for representing ice microphysics in models: Description and tests using a kinematic framework. J. Atmos. Sci., 65, 1528–1548, doi: 10.1175/2007jas2491.1.

    Article  Google Scholar 

  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 3642–3659, doi: 10.1175/2008jcli2105.1.

    Google Scholar 

  • Murray, B. J., T. W. Wilson, S. Dobbie, et al.,2010: Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions. Nat. Geosci., 3, 233–237, doi: 10.1038/ngeo 817.

    Article  Google Scholar 

  • Myhre, G., B. H. Samset, M. Schulz, et al.,2013: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys., 13, 1853–1877, doi: 10.5194/acp-13-1853-2013.

    Article  Google Scholar 

  • Neale, R. B., A. Gettelman, S. Park, et al.,2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado, USA.

    Google Scholar 

  • Penner, J. E., C. Zhou, and X. H. Liu, 2015: Can cirrus cloud seed-ing be used for geoengineering? Geophys Res. Lett., 42, 8775–8782, doi: 10.1002/2015gl065992.

    Article  Google Scholar 

  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 2261–2288, doi: 10.1175/1520-0477(1999)080<2261:aiucfi> 2.0.co;2.

    Article  Google Scholar 

  • Seinfeld, J. H., C. Bretherton, K. S. Carslaw, et al.,2016: Improving our fundamental understanding of the role of aerosol–cloud interactions in the climate system. Proc. Natl. Acad. Sci. USA, 113, 5781–5790, doi: 10.1073/pnas.1514043113.

    Article  Google Scholar 

  • Shi, X., and X. Liu, 2016: Effect of cloud-scale vertical velocity on the contribution of homogeneous nucleation to cirrus formation and radiative forcing. Geophys. Res. Lett., 43, 6588–6595, doi: 10.1002/2016gl069531.

    Article  Google Scholar 

  • Shi, X., X. Liu, and K. Zhang, 2015: Effects of pre-existing ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5). Atmos. Chem. Phys., 15, 1503–1520, doi: 10.5194/acp-15-1503-2015.

    Article  Google Scholar 

  • Spichtinger, P., and K. M. Gierens, 2009: Modelling of cirrus clouds—Part 2: Competition of different nucleation mechanisms. Atmos. Chem. Phys., 9, 2319–2334, doi: 10.5194/acp-9-2319-2009.

    Article  Google Scholar 

  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, et al.,1996: Clouds and the earth’s radiant energy system (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853–868, doi: 10.1175/1520-0477(1996)077<0853:CATE RE>2.0.CO;2.

    Article  Google Scholar 

  • Zhang, K., X. H. Liu, J. H. Yoon, et al.,2013a: Assessing aerosol indirect effect through ice clouds in CAM5. AIP Conf. Proc., 1527, 751, doi: 10.1063/1.4803379.

    Article  Google Scholar 

  • Zhang, K., X. Liu, M. Wang, et al.,2013b: Evaluating and constraining ice cloud parameterizations in CAM5 using aircraft measurements from the SPARTICUS campaign. Atmos. Chem. Phys., 13, 4963–4982, doi: 10.5194/acp-13-4963-2013.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Kai Zhang for his assistance with prescribed aerosol code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Liu.

Additional information

Supported by the National Science Foundation of US (ATM-1642289) and National Natural Science Foundation of China (41775095).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Liu, X. Sensitivity Study of Anthropogenic Aerosol Indirect Forcing through Cirrus Clouds with CAM5 Using Three Ice Nucleation Parameterizations. J Meteorol Res 32, 693–706 (2018). https://doi.org/10.1007/s13351-018-8011-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-018-8011-z

Key words

Navigation