Skip to main content
Log in

Ant lion optimisation algorithm for structural damage detection using vibration data

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

Structural damage assessment is crucial for structural health monitoring to evaluate the safety and residual service life of the structure. To solve the structural damage detection problem, various optimisation techniques have been in use. However, they fail to identify damage and are prone to converge to local optima for improper tuning of algorithm-specific parameters, which are problem specific. In this study, the recently proposed ant lion optimiser, which is a population-based search algorithm, mimicked the hunting behaviour of antlions, was used for assessing structural damage. The objective function for damage detection was based on vibration data, such as natural frequencies and mode shapes. The effectiveness of the proposed technique was evaluated against several benchmark problems with different damage settings. The results indicate that the proposed algorithm required fewer parameters than other metaheuristic algorithms to identify the location and extent of damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Salawu OS (1997) Detection of structural damage through changes in frequency: a review. Eng Struct 19(9):718–723

    Article  Google Scholar 

  2. Das S, Saha P, Patro SK (2016) Vibration-based damage detection techniques used for health monitoring of structures: a review. J Civil Struct Health Monit 6(3):477–507

    Article  Google Scholar 

  3. Adams RD, Cawley P, Pye CJ, Stone BJ (1978) A vibration technique for non-destructively assessing the integrity of structures. J Mech Eng Sci 20(2):93–100

    Article  Google Scholar 

  4. Hassiotis S, Jeong GD (1995) Identification of stiffness reductions using natural frequencies. J Eng Mech 121(10):1106–1113

    Article  Google Scholar 

  5. Messina A, Williams EJ, Contursi T (1998) Structural damage detection by a sensitivity and statistical-based method. J Sound Vib 216(5):791–808

    Article  Google Scholar 

  6. Maity D, Tripathy RR (2005) Damage assessment of structures from changes in natural frequencies using genetic algorithm. Struct Eng Mech 19(1):21–42

    Article  Google Scholar 

  7. Beena P, Ganguli R (2011) Structural damage detection using fuzzy cognitive maps and hebbian learning. Appl Soft Comput 11(1):1014–1020

    Article  Google Scholar 

  8. Vakil-Baghmisheh MT, Peimani M, Homayoun-Sadeghi M, Ettefagh MM (2008) Crack detection in beam-like structures using genetic algorithms. Appl Soft Comput 8(2):1150–1160

    Article  Google Scholar 

  9. Kao CY, Chen XZ, Jan JC (2016) Locating damage to structures using incomplete measurements. J Civil Struct Health Monit 6(5):817–838

    Article  Google Scholar 

  10. Ding ZH, Huang M, Lu ZR (2016) Structural damage detection using artificial bee colony algorithm with hybrid search strategy. Swarm Evol Comput 28:1–13

    Article  Google Scholar 

  11. Gharechahi A, Ketabdari MJ (2017) A novel method for selecting measurement points in structural model updating and damage detection. J Civil Struct Health Monit 7(4):471–482

    Article  Google Scholar 

  12. Ercolani GD, Felix DH, Ortega NF (2018) Crack detection in prestressed concrete structures by measuring their natural frequencies. J Civil Struct Health Monit 8(4):661–671

    Article  Google Scholar 

  13. Lee U, Shin J (2002) A frequency response function-based structural damage identification method. Comput Struct 80(2):117–132

    Article  Google Scholar 

  14. Mohan SC, Maiti DK, Maity D (2013) Structural damage assessment using FRF employing particle swarm optimization. Appl Math Comput 219(20):10387–10400

    MathSciNet  MATH  Google Scholar 

  15. Li H, Yang H, Hu SLJ (2006) Modal strain energy decomposition method for damage localization in 3D frame structures. J Eng Mech 132(9):941–951

    Article  Google Scholar 

  16. Seyedpoor SM (2012) A two stage method for structural damage detection using a modal strain energy based index and particle swarm optimization. Int J Non Linear Mech 47(1):1–8

    Article  MathSciNet  Google Scholar 

  17. Grande E, Imbimbo MJ (2014) A multi-stage data-fusion procedure for damage detection of linear systems based on modal strain energy. J Civil Struct Health Monit 4(2):107–118

    Article  Google Scholar 

  18. Li Y, Wang S, Zhang M, Zheng C (2016) An improved modal strain energy method for damage detection in offshore platform structures. JMSA 15(2):182–192

    Article  Google Scholar 

  19. Pal J, Banerjee S (2015) A combined modal strain energy and particle swarm optimization for health monitoring of structures. J Civil Struct Health Monit 5(4):353–363

    Article  Google Scholar 

  20. Ashory MR, Ghasemi-Ghalebahman A, Kokabi MJ (2017) An efficient modal strain energy-based damage detection for laminated composite plates. Adv Compos Mater 27(2):147–162

    Article  Google Scholar 

  21. Stutz LT, Castello DA, Rochinha FA (2005) A flexibility-based continuum damage identification approach. J Sound Vib 279(3):641–667

    Article  Google Scholar 

  22. Li J, Wu B, Zeng QC, Lim CW (2010) A generalized flexibility matrix based approach for structural damage detection. J Sound Vib 329(22):4583–4587

    Article  Google Scholar 

  23. Zare-Hosseinzadeh A, Ghodrati AG, Seyed Razzaghi SA, Koo KY, Sung SH (2016) Structural damage detection using sparse sensors installation by optimization procedure based on the modal flexibility matrix. J Sound Vib 381:65–82

    Article  Google Scholar 

  24. Chandrashekhar M, Ganguli R (2009) Structural damage detection using modal curvature and fuzzy logic. Struct Health Monit 8(4):267–282

    Article  Google Scholar 

  25. Banerji P, Chikermane S (2012) Condition assessment of a heritage arch bridge using a novel model updation technique. J Civil Struct Health Monit 2(1):1–16

    Article  Google Scholar 

  26. Mishra M (2013) Bayesian approach to NDT data fusion for St. Torcato. MSc Thesis University of Minho, Portugal

  27. Ramos LF, Miranda T, Mishra M, Fernandes FM, Manning E (2015) A Bayesian approach for NDT data fusion: the Saint Torcato church case study. Eng Struct 84:120–129

    Article  Google Scholar 

  28. Na C, Kim SP, Kwak HG (2011) Structural damage evaluation using genetic algorithm. J Sound Vib 330(12):2772–2783

    Article  Google Scholar 

  29. Mares C, Surace C (1996) An application of genetic algorithms to identify damage in elastic structures. J Sound Vib 195(2):195–215

    Article  Google Scholar 

  30. Sinha JK, Friswell MI, Edwards S (2002) Simplified models for the location of cracks in beam structures using measured vibration data. J Sound Vib 251(1):13–38

    Article  Google Scholar 

  31. Hong H, Yong X (2002) Vibration-based damage detection of structures by genetic algorithm. J Comput Civil Eng 16(3):222–229

    Article  MathSciNet  Google Scholar 

  32. Lee J (2009) Identification of multiple cracks in a beam using natural frequencies. J Sound Vib 320(3):482–490

    Article  Google Scholar 

  33. Majumdar A, Maiti DK, Maity D (2012) Damage assessment of truss structures from changes in natural frequencies using ant colony optimization. Appl Math Comput 218(19):9759–9772

    MATH  Google Scholar 

  34. Nanda B, Maity D, Maiti DK (2014) Crack assessment in frame structures using modal data and unified particle swarm optimization technique. Adv Struct Eng 17(5):747–766

    Article  Google Scholar 

  35. Kang F, Li JJ, Xu Q (2012) Damage detection based on improved particle swarm optimization using vibration data. Appl Soft Comput 12(8):2329–2335

    Article  Google Scholar 

  36. Wei Z, Liu J, Lu Z (2018) Structural damage detection using improved particle swarm optimization. Inverse Probl Sci Eng 26(6):792–810

    Article  MathSciNet  MATH  Google Scholar 

  37. Li J, Zhang X, Xing J (2015) Optimal sensor placement for long-span cable-stayed bridge using a novel particle swarm optimization algorithm. J Civil Struct Health Monit 5(5):677–685

    Article  Google Scholar 

  38. Ding Z, Lu Z, Huang M, Liu J (2017) Improved artificial bee colony algorithm for crack identification in beam using natural frequencies only Inverse. Probl Sci Eng 25(2):218–238

    MathSciNet  MATH  Google Scholar 

  39. Chou JH, Ghaboussi J (2001) Genetic algorithm in structural damage detection. Comput Struct 79(14):1335–1353

    Article  Google Scholar 

  40. Laier JE, Morales JDV (2009) Improved genetic algorithm for structural damage detection. In: Yuan Y, Cui J, Mang HA (eds) Computational structural engineering. Springer, Dordrecht, pp 833–839

    Chapter  Google Scholar 

  41. Silva M, Santos A, Figueiredo E, Santos R, Sales C, Costa JCWA (2016) A novel unsupervised approach based on a genetic algorithm for structural damage detection in bridges. Eng Appl Artif Intell 52:168–180

    Article  Google Scholar 

  42. Meruane V, Heylen W (2011) An hybrid real genetic algorithm to detect structural damage using modal properties. Mech Syst Signal Process 25(5):1559–1573

    Article  Google Scholar 

  43. Wang FL, Chan THT, Thambiratnam DP (2013) Damage diagnosis for complex steel truss bridges using multi-layer genetic algorithm. J Civil Struct Health Monit 3(2):117–127

    Article  Google Scholar 

  44. Tsou P, Shen MHH (1994) Structural damage detection and identification using neural networks. AIAA J 32(1):176–183

    Article  MATH  Google Scholar 

  45. Neves AC, González I, Leander J (2017) Structural health monitoring of bridges: a model-free ANN-based approach to damage detection. J Civil Struct Health Monit 7(5):689–702

    Article  Google Scholar 

  46. Miguel LFF, Miguel LFF, Kaminski J, Riera JD (2012) Damage detection under ambient vibration by Harmony search algorithm. Expert Syst Appl 39(10):9704–9714

    Article  Google Scholar 

  47. Kourehli SS, Bagheri A, Amiri GG, Ghafory-Ashtiany M (2013) Structural damage detection using incomplete modal data and incomplete static response KSCE. J Civil Eng 17(1):216–223

    Google Scholar 

  48. Seyedpoor SM, Montazer M (2015) A damage identification method for truss structures using a flexibility-based damage probability index and differential evolution algorithm. Inverse Probl Sci Eng 24(8):1303–1322

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhu JJ, Huang M, Lu ZR (2017) Bird mating optimizer for structural damage detection using a hybrid objective function. Swarm Evol Comput 35:41–52

    Article  Google Scholar 

  50. Kaveh A, Zolghadr (2015) A an improved CSS for damage detection of truss structures using changes in natural frequencies and mode shapes. Adv Eng Softw 80(2015):93–100

    Article  Google Scholar 

  51. Kaveh A, Dadras A (2018) Structural damage identification using an enhanced thermal exchange optimization algorithm. Eng Optim 50(3):430–451

    Article  Google Scholar 

  52. Alkayem NF, Cao M, Zhang Y, Bayat M, Su Z (2018) Structural damage detection using finite element model updatingcwith evolutionary algorithms: a survey. Neural Comput Appl 30(2):389–411

    Article  Google Scholar 

  53. Sahoo B, Maity D (2007) Damage assessment of structures using hybrid neuro-genetic algorithm. Appl Soft Comput 7(1):89–104

    Article  Google Scholar 

  54. Begambre O, Laier JE (2009) A hybrid particle swarm optimization-simplex algorithm (PSOS) for structural damage identification. Adv Eng Softw 40(9):883–891

    Article  MATH  Google Scholar 

  55. Nobahari M, Seyedpoor SM (2011) Structural damage detection using an efficient correlation-based index and a modified genetic algorithm. Math Comput Model 53(9):1798–1809

    Article  MATH  Google Scholar 

  56. Vakil-Baghmisheh MT, Peimani M, Sadeghi MH, Ettefagh MM, Tabrizi AF (2012) A hybrid particle swarm-nelder-mead optimization method for crack detection in cantilever beams. Appl Soft Comput 12(8):2217–2226

    Article  Google Scholar 

  57. Villalba JD, Laier JE (2012) Localising and quantifying damage by means of a multichromosome genetic algorithm. Adv Eng Softw 50:150–157

    Article  Google Scholar 

  58. Kang F, Li J, Xu Q (2009) Structural inverse analysis by hybrid simplex artificial bee colony algorithms. Comput Struct 87(13):861–870

    Article  Google Scholar 

  59. Sandesh S, Shankar K (2010) Application of a hybrid of particle swarm and genetic algorithm for structural damage detection. Inverse Probl Sci Eng 18(7):997–1021

    Article  MATH  Google Scholar 

  60. Zhu JJ, Li H, Liu JK (2015) A two-step approach for structural damage localization and quantification using static and dynamic response data. Adv Struct Eng 9:1415–1426

    Article  Google Scholar 

  61. Barman SK, Maiti DK, Maity D (2017) A new hybrid unified particle swarm optimization technique for damage assessment from changes of vibration responses. In: International conference on theoretical, applied, computational and experimental mechanics, IIT Kharagpur, 28–30 Dec 2017

  62. Das S, Saha P (2018) Structural health monitoring techniques implemented on IASC–ASCE benchmark problem: a review. J Civil Struct Health Monit 8(4):689718

    Article  Google Scholar 

  63. Zapico JL, González MP, Friswell MI, Taylor CA, Crewe AJ (2003) Finite element model updating of a small scale bridge. J Sound Vib 268(5):993–1012

    Article  Google Scholar 

  64. Catbas FN, Brown DL, Aktan AE (2006) Use of modal flexibility for damage detection and condition assessment: case studies and demonstrations on large structures. J Struct Eng 132(11):1699–1712

    Article  Google Scholar 

  65. Nazarian E, Ansari F, Azari H (2016) Recursive optimization method for monitoring of tension loss in cables of cable-stayed bridges. J Intell Mater Syst Struct 27(15):2091–2101

    Article  Google Scholar 

  66. Talebinejad I, Fischer C, Ansari F (2011) Numerical evaluation of vibration based methods for damage assessment of cable stayed bridges. Comput Aided Civ Inf Eng 26:239–251

    Article  Google Scholar 

  67. Abdel Wahab MM, De Roeck G (1999) Damage detection in bridges using modal curvatures: application to a real damage scenario. J Sound Vib 226(2):217–235

    Article  Google Scholar 

  68. Wu X, Ghaboussi J, Garrett JH (1992) Use of neural networks in detection of structural damage. Comput Struct 42(4):649–659

    Article  MATH  Google Scholar 

  69. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  70. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Neural Networks, 1995 Proceedings of the IEEE International Conference on Neural Networks, vol 4, pp 1942–1948

  71. Parsopoulos KE, Vrahatis MN (2005) Unified particle swarm optimization for solving constrained engineering optimization problems. Adv Nat Comput ICNC 3612Z:582–591

    Google Scholar 

  72. Nanda B, Maity D, Maiti DK (2014) Modal parameter based inverse approach for structural joint damage assessment using unified particle swarm optimization. Appl Math Comput 242:407–422

    MathSciNet  MATH  Google Scholar 

  73. Nanda B, Maity D, Maiti DK (2014) Damage assessment from curvature mode shape using unified particle swarm optimization. Struct Eng Mech 52(2):307–322

    Article  Google Scholar 

  74. Jebieshia TR, Maity D, Maiti DK (2015) Vibration characteristics and damage detection of composite structures with anisotropic damage using unified particle swarm optimization technique. In: Proceedings of the American society for composites, 13th technical conference, Michigan State University, East Lansing, MI, 28–30 Sept, 1569–1589

  75. Jebieshia TR, Maity D, Maiti DK (2015) Damage assessment of composite structures using Particle Swarm Optimization. Int J Aerosp Syst Eng 2(2):24–28

    Google Scholar 

  76. Jebieshia TR, Maity D, Maiti DK (2015) Damage detection of laminated composite shellsusing unified particle swarm optimization. In: Proceedings of ICTACEM 2017 international conference on theoretical, applied, computational and experimental mechanics, 28–30 Dec 2017, IIT Kharagpur

  77. Talatahari S (2016) Optimum design of skeletal structures using ant lion optimzer. Int J Optim Civil Eng 6(1):13–25

    Google Scholar 

  78. Ali ES, Abd Elazim SM, Abdelaziz AY (2016) Ant lion optimization algorithm for renewable distributed generations. Energy 116(1):445–458

    Article  Google Scholar 

  79. Subhashini KR, Satapathy JK (2017) Development of an enhanced ant lion optimization algorithm and its application in antenna array synthesis. Appl Soft Comput 59:153–173

    Article  Google Scholar 

  80. Kanimozhi G, Kumar H (2018) Modeling of solar cell under different conditions by Ant Lion Optimizer with LambertW function. Appl Soft Comput 71:141–151

    Article  Google Scholar 

  81. Perera R, Ruiz A (2008) A multistage FE updating procedure for damage identification in large-scale structures based on multiobjective evolutionary optimization. Mech Syst Signal Process 22(4):970–991

    Article  Google Scholar 

  82. Allemang RJ, Brown DL (1982) A correlation coefficient for modal vector analysis. In: IMAC, vol.-I, pp 110–116

  83. Mottershead JE, Friswell MI (1993) Model updating in structural dynamics: a survey. J Sound Vib 167(2):347–375

    Article  MATH  Google Scholar 

  84. Friswell MI, Mottershead JE (1995) Finite element model updating in structural dynamics. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  85. Wang W, Mottershead JE, Mares C (2009) Mode-shape recognition and finite element model updating using the Zernike moment descriptor. Mech Syst Signal Process 23:2088–2112

    Article  Google Scholar 

  86. MATLAB. Version 7.10.0 (R2010a) (2010) Natick. The MathWorks Inc., Massachusetts

  87. Parsopoulos KE, Vrahatis MN (2010) Particle swarm optimization and intelligence: advances and applications. Information Science Reference (IGI Global), Hershey

    Book  Google Scholar 

  88. Majumdar A, Nanda B, Maiti DK, Maity D (2014) Structural damage detection based on modal parameters using continuous ant colony optimization. Adv Civil Eng 174185(14):14

    Google Scholar 

  89. Yang JCS, Tsai T, Pavlin V, Chen J, Tsai WH (1985) Structural damage detection by the system identification technique. Shock Vib Bull 3:57–66

    Google Scholar 

  90. Dahak M, Touat N, Benseddiq N (2017) On the classification of normalized natural frequencies for damage detection in cantilever beam. J Sound Vib 402:70–84

    Article  Google Scholar 

  91. Kyon YW, Bang H (2000) The finite element method using matlab. CRC Press, Boca Raton

    Google Scholar 

  92. Gao W, Zhang N (2000) Optimal active random vibration control for smart structures based on reliability. MIT Press, Massachusetts

    Google Scholar 

Download references

Acknowledgements

This research work was financially supported by ISRO (Indian Space Research Organisation) IIT Kharagpur cell. The authors are grateful to ISRO cell for their financial support for carrying out the research work at the Departments of Aerospace and Civil Engineering, IIT, Kharagpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Mishra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, M., Barman, S.K., Maity, D. et al. Ant lion optimisation algorithm for structural damage detection using vibration data. J Civil Struct Health Monit 9, 117–136 (2019). https://doi.org/10.1007/s13349-018-0318-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-018-0318-z

Keywords

Navigation