Skip to main content

Advertisement

Log in

Bridge inspection: human performance, unmanned aerial systems and automation

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

Unmanned aerial systems (UASs) have become of considerable private and commercial interest for a variety of jobs and entertainment in the past 10 years. This paper is a literature review of the state of practice for the United States bridge inspection programs and outlines how automated and unmanned bridge inspections can be made suitable for present and future needs. At its best, current technology limits UAS use to an assistive tool for the inspector to perform a bridge inspection faster, safer, and without traffic closure. The major challenges for UASs are satisfying restrictive Federal Aviation Administration regulations, control issues in a GPS-denied environment, pilot expenses and availability, time and cost allocated to tuning, maintenance, post-processing time, and acceptance of the collected data by bridge owners. Using UASs with self-navigation abilities and improving image-processing algorithms to provide results near real-time could revolutionize the bridge inspection industry by providing accurate, multi-use, autonomous three-dimensional models and damage identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(Adapted [46])

Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. FHWA (2015) Deficient bridges by highway system. https://www.fhwa.dot.gov/bridge/nbi/no10/defbr15.cfm#a. Accessed 19 Apr 2018

  2. ASCE (2017) Infrastructure report card. https://www.infrastructurereportcard.org/americas-grades/. Accessed 19 Apr 2018

  3. Chang M, Maguire M, Sun Y (2017) Framework for mitigating human bias in selection of explanatory variables for bridge deterioration modeling. J Infrastruct Syst 23(3):04017002. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000352

    Google Scholar 

  4. Chang M, Maguire M (2016) Developing deterioration models for wyoming bridges. wyoming department of transportation, Cheyenne. http://www.dot.state.wy.us/files/live/sites/wydot/files/shared/Planning/Research/RS04214%20Bridge%20Deterioration.pdf

  5. Lichtenstein AG (1993) The silver bridge collapse recounted. J Perform Construct Facil 7(4):249–261. https://doi.org/10.1061/(ASCE)0887-3828(1993)7:4(249)

    Google Scholar 

  6. Chong KP, Carino NJ, Washer G (2003) Health monitoring of civil infrastructures. Smart Mater Struct 12(3):483–493. https://doi.org/10.1177/1475921703036169

    Google Scholar 

  7. Swenson DV, Ingraffea AR (1991) The collapse of the Schoharie Creek Bridge: a case study in concrete fracture mechanics. Int J Fract 51(1):73–92. https://doi.org/10.1007/bf00020854

    Google Scholar 

  8. Lee S, Kalos N (2014) Non-destructive testing methods in the US for bridge inspection and maintenance. KSCE J Civ Eng 18(5):1322–1331. https://doi.org/10.1007/s12205-014-0633-9

    Google Scholar 

  9. Thompson PD, Small EP, Johnson M, Marshall AR (1998) The Pontis bridge management system. Struct Eng Int 8(4):303–308. https://doi.org/10.2749/101686698780488758

    Google Scholar 

  10. Tarighat A, Miyamoto A (2009) Fuzzy concrete bridge deck condition rating method for practical bridge management system. Expert Syst Appl 36(10):12077–12085. https://doi.org/10.1016/j.eswa.2009.04.043

    Google Scholar 

  11. Khan MS (2000) Bridge-management systems past, present and future. Concr Int 22(8):53–56

    Google Scholar 

  12. Ryan TW, Hartle RA, Mann JE, Danovich LJ (2012) Bridge inspector’s reference manual. FHWA NHI 03-001, FHWA, U.S. Department of Transportation. https://www.fhwa.dot.gov/bridge/nbis/pubs/nhi12049.pdf

  13. FHWA (2018). Archived: highway bridges by deck structure type 2016. https://www.fhwa.dot.gov/bridge/nbi/no10/deck16.cfm. Accessed 19 Apr 2018

  14. Dekelbab W, Al-Wazeer A, Harris B (2008) History lessons from the national bridge inventory. Public roads, publication number: FHWA-HRT-08-004. https://www.fhwa.dot.gov/publications/publicroads/08may/05.cfm

  15. Zink J, Lovelace B (2015) Unmanned aerial vehicle bridge inspection demonstration project (no. MN/RC 2015-40). www.dot.state.mn.us/research/TS/2015/201540.pdf

  16. Rens KL, Wipf TJ, Klaiber FW (1997) Review of nondestructive evaluation techniques of civil infrastructure. J Perform Construct Facil 11(4):152–160. https://doi.org/10.1061/(ASCE)0887-3828(1997)11:4(152)

    Google Scholar 

  17. Rolander D, Phares B, Graybeal B, Moore M, Washer G (2001) Highway bridge inspection: state-of-the-practice survey. J Transport Res Board 1749:73–81. https://doi.org/10.3141/1749-12

    Google Scholar 

  18. Vaghefi K, Oats RC, Harris DK, Ahlborn TTM, Brooks CN, Endsley KA, Dobson R (2011) Evaluation of commercially available remote sensors for highway bridge condition assessment. J Bridge Eng 17(6):886–895. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000303

    Google Scholar 

  19. Latorella KA, Prabhu PV (2000) A review of human error in aviation maintenance and inspection. Int J Ind Ergon 26(2):133–161. https://doi.org/10.1016/s0169-8141(99)00063-3

    Google Scholar 

  20. Prieto F, Redarce T, Lepage R, Boulanger P (2002) An automated inspection system. Int J Adv Manuf Technol 19(12):917–925. https://doi.org/10.1007/s001700200104

    Google Scholar 

  21. FWHA (2014) RABIT bridge inspection tool. https://www.fhwa.dot.gov/research/tfhrc/programs/infrastructure/structures/ltbp/ltbpresearch/rabit/index.cfm. Accessed 19 Apr 2018

  22. Gucunski N, Boone SD, Zobel R, Ghasemi H, Parvardeh H, Kee S-H (2014) Nondestructive evaluation inspection of the Arlington Memorial Bridge using a robotic assisted bridge inspection tool (RABIT). Nondestructive characterization for composite materials, aerospace engineering, civil infrastructure, and homeland security, vol. 9063. SPIE, Bellingham. https://doi.org/10.1117/12.2063963

  23. Gucunski N, Kee SH, La H, Basily B, Maher A, Ghasemi H (2015) Implementation of a fully autonomous platform for assessment of concrete bridge decks RABIT. In Structures Congress 2015. Reston, pp. 367–378. http://dx.doi.org/10.1061/9780784479117.032

  24. Leibbrandt A, Caprari G, Angst U, Siegwart RY, Flatt RJ, Elsener B (2012) Climbing robot for corrosion monitoring of reinforced concrete structures. In: 2nd int. conf. on applied robotics for the power industry (CARPI), IEEE, New York, pp 10–15. https://doi.org/10.1109/CARPI.2012.6473365

  25. Lim RS, La HM, Shan , Sheng W (2011) Developing a crack inspection robot for bridge maintenance. In: IEEE international conference on robotics and automation (ICRA). Shanghai, pp 6288–6293. https://doi.org/10.1109/icra.2011.5980131

  26. La HM, Gucunski N, Dana K, Kee SH (2017) Development of an autonomous bridge deck inspection robotic system. J Field Robot 34(8):1489–1504. https://doi.org/10.1002/rob.21725

    Google Scholar 

  27. Lattanzi D, Miller G (2017) Review of robotic infrastructure inspection systems. J Infrastruct Syst 23(3):04017004 (1–16). https://doi.org/10.1061/(ASCE)IS.1943-555X.0000353

  28. Cook KL (2007) The silent force multiplier: the history and role of UAVs in warfare. In: IEEE aerospace conference. Big Sky, MT, pp. 1–7. https://doi.org/10.1109/AERO.2007.352737

  29. European Commission (2009) Study analysing the current activities in the field of UAV. Enterprise and industry directorate-general. “Where are we today—the industrial/economical/political situation in Europe and the international interdependencies. https://ec.europa.eu/docsroom/documents/1707/attachments/1/translations/en/renditions/pdf

  30. Astm AD (2013) 4788: standard test method for detecting delaminations in bridge decks using infrared thermography. ASTM International, West Conshohocken

    Google Scholar 

  31. Vaghefi K, Ahlborn TTM, Harris DK, Brooks CN (2015) Combined imaging technologies for concrete bridge deck condition assessment. J Perform Construct Facil 29(4):04014102. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000465

    Google Scholar 

  32. Whitehead K, Hugenholtz CH (2014) Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: a review of progress and challenges. J Unmanned Veh Syst 2(3):69–85. https://doi.org/10.1139/juvs-2014-0007

    Google Scholar 

  33. Jensen RR, Hardin AJ, Hardin PJ, Jensen JR (2011) A new method to correct pushbroom hyperspectral data using linear features and ground control points. GI Sci Remot Sens 48(3):416–431. https://doi.org/10.2747/1548-1603.48.3.416

    Google Scholar 

  34. Gonzalez-Partida JT, Almorox-Gonzalez P, Burgos-Garcia M, Dorta-Naranjo BP (2008) SAR system for UAV operation with motion error compensation beyond the resolution cell. Sensors 8(5):3384–3405. https://doi.org/10.3390/s8053384

    Google Scholar 

  35. Remy MA, de Macedo KA, Moreira JR (2012) The first UAV-based P-and X-band interferometric SAR system. In: Paper presented at the 2012 IEEE international geoscience and remote sensing symposium (IGARSS). Munich, pp 5041–5044. https://doi.org/10.1109/igarss.2012.6352478

  36. Colomina I, Molina P (2014) Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J Photogramm Remote Sens 92:79–97. https://doi.org/10.1016/j.isprsjprs.2014.02.013

    Google Scholar 

  37. Sa I, Hrabar S, Corke P (2014) Inspection of pole-like structures using a vision-controlled VTOL UAV and shared autonomy. In: IEEE/RSJ international conference on intelligent robots and systems (IROS 2014). IEEE. Chicago, pp 4819–4826 https://doi.org/10.1109/IROS.2014.6943247

  38. Pajares G (2015) Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogramm Eng Remot Sens 81(4):281–329. https://doi.org/10.14358/PERS.81.4.281

    Google Scholar 

  39. Vierling LA, Fersdahl M, Chen X, Li Z, Zimmerman P (2006) The Short Wave Aerostat-Mounted Imager (SWAMI): a novel platform for acquiring remotely sensed data from a tethered balloon. Remote Sens Environ 103(3):255–264. https://doi.org/10.1016/j.rse.2005.01.021

    Google Scholar 

  40. Roldán JJ, Joossen G, Sanz D, del Cerro J, Barrientos A (2015) Mini-UAV based sensory system for measuring environmental variables in greenhouses. Sensors 15(2):3334–3350. https://doi.org/10.3390/s150203334

    Google Scholar 

  41. Moller S (2008) CALTRANS Bridge inspection aerial robot. CA08-0182, Final report. division of research and innovation, California Department of Transportation. Sacramento. www.dot.ca.gov/newtech/researchreports/reports/2008/08-0182.pdf

  42. Valavanis KP, Vachtsevanos GJ (2015) Future of unmanned aviation. In: Valavanis KP, Vachtsevanos GJ (eds) Handbook of unmanned aerial vehicles. Springer, Netherlands. http://dx.doi.org/10.1007/978-1-4020-6114-1

  43. Kerns AJ, Shepard DP, Bhatti JA, Humphreys TE (2014) Unmanned aircraft capture and control via GPS spoofing. J Field Robot 31(4):617–636. https://doi.org/10.1002/rob.21513

    Google Scholar 

  44. Miller BM, Stepanyan KV, Popov AK, Miller AB (2017) UAV navigation based on videosequences captured by the onboard video camera. Autom Remote Control 78(12):2211–2221. https://doi.org/10.1134/S0005117917120098

    MathSciNet  MATH  Google Scholar 

  45. Máthé K, Buşoniu L (2015) Vision and control for UAVs: a survey of general methods and of inexpensive platforms for infrastructure inspection. Sensors 15(7):14887–14916. https://doi.org/10.3390/s150714887

    Google Scholar 

  46. Dorafshan S, Maguire M, Hoffer N, Coopmans C (2017) Fatigue crack detection using unmanned aerial systems in under-bridge inspection. RP 256. Final report. Idaho Department of Transportation, Boise. http://apps.itd.idaho.gov/apps/research/Completed/RP256.pdf

  47. Zhou G, Reichle S (2010) UAV-based multi-sensor data fusion processing. Int J Image Data Fusion 1(3):283–291. https://doi.org/10.1080/19479832.2010.497343

    Google Scholar 

  48. Fasano G, Accardo D, Moccia A, Carbone C, Ciniglio U, Corraro F, Luongo S (2008) Multi-sensor-based fully autonomous non-cooperative collision avoidance system for unmanned air vehicles. J Aerosp Comput Inf Commun 5(10):338–360. https://doi.org/10.2514/1.35145

    Google Scholar 

  49. Thrun S, Burgard W, Fox D (2000) A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In: Proceedings of the IEEE international conference on robotics and automation (ICRA2000), San Francisco, vol 1, pp 321–328. https://doi.org/10.1109/robot.2000.844077

  50. Se S, Lowe D, Little J (2002) Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks. Int J Robot Res 21(8):735–758. https://doi.org/10.1177/027836402761412467

    Google Scholar 

  51. Goerzen C, Kong Z, Mettler B (2010) A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J Intell Rob Syst 57(1):65–100. https://doi.org/10.1007/s10846-009-9383-1

    MATH  Google Scholar 

  52. Flores G, Zhou S, Lozano R, Castillo P (2014) A vision and GPS-based real-time trajectory planning for a MAV in unknown and low-sunlight environments. J Intell Rob Syst 74(1–2):59–67. https://doi.org/10.1007/s10846-013-9975-7

    Google Scholar 

  53. Stephen J, Lachapelle G (2001) Development and testing of a GPS-augmented multi-sensor vehicle navigation system. J Navig 54(2):297–319. https://doi.org/10.1017/S0373463301001357

    Google Scholar 

  54. Lemaire T, Berger C, Jung IK, Lacroix S (2007) Vision-based slam: stereo and monocular approaches. Int J Comput Vision 74(3):343–364. https://doi.org/10.1007/s11263-007-0042-3

    Google Scholar 

  55. Kim J, Sukkarieh S (2007) Real-time implementation of airborne inertial-SLAM. Robot Autonom Syst 55(1):62–71. https://doi.org/10.1016/j.robot.2006.06.006

    Google Scholar 

  56. Bachrach A, He R, Roy N (2009) Autonomous flight in unknown indoor environments. Int J Micro Air Veh 1(4):217–228. https://doi.org/10.1260/175682909790291492

    Google Scholar 

  57. Urzua S, Munguía R, Grau A (2017) Vision-based SLAM system for MAVs in GPS-denied environments. Int J Micro Air Veh 9(4):283–296. https://doi.org/10.1177/1756829317705325

    Google Scholar 

  58. Fuentes-Pacheco J, Ruiz-Ascencio J, Rendón-Mancha JM (2015) Visual simultaneous localization and mapping: a survey. Artif Intell Rev 43(1):55–81. https://doi.org/10.1007/s10462-012-9365-8

    Google Scholar 

  59. Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM (2012) ‘Structure-from-Motion’photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179:300–314. https://doi.org/10.1016/j.geomorph.2012.08.021

    Google Scholar 

  60. Pons JP, Keriven R, Faugeras O (2007) Multi-view stereo reconstruction and scene flow estimation with a global image-based matching score. Int J Comput Vision 72(2):179–193. https://doi.org/10.1007/s11263-006-8671-5

    Google Scholar 

  61. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Google Scholar 

  62. Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359. https://doi.org/10.1016/j.cviu.2007.09.014

    Google Scholar 

  63. Nex F, Remondino F (2014) UAV for 3D mapping applications: a review. Appl Geomat 6(1):1–15. https://doi.org/10.1007/s12518-013-0120-x

    Google Scholar 

  64. Torok MM, Golparvar-Fard M, Kochersberger KB (2013) Image-based automated 3D crack detection for post-disaster building assessment. J Comput Civ Eng 28(5):A4014004. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000334

    Google Scholar 

  65. Zheng P (2014) Crack detection and measurement utilizing image-based reconstruction. Research report. Polytechnic Institute and State University, Blacksburg. https://vtechworks.lib.vt.edu/bitstream/handle/10919/48963/crack_detection_and_measurement_utilizing_image_based_reconstruction.pdf?sequence=1&isAllowed=y

  66. Rodriguez-Gonzalvez P, Gonzalez-Aguilera D, Lopez-Jimenez G, Picon-Cabrera I (2014) Image-based modeling of built environment from an unmanned aerial system. Autom Construct 48:44–52. https://doi.org/10.1016/j.autcon.2014.08.010

    Google Scholar 

  67. Dorafshan S, Maguire M (2017) Autonomous detection of concrete cracks on bridge decks and fatigue cracks on steel members. Digital Imaging. ASNT, Mashantucket, pp 33–44. https://ndtlibrary.asnt.org/2017/AutonomousDetectionofConcreteCracksonBridgeDecksandFatigueCracksonSteelMembers

  68. Abdel-Qader I, Abudayyeh O, Kelly ME (2003) Analysis of edge-detection techniques for crack identification in bridges. J Comput Civ Eng 17(4):255–263. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)

    Google Scholar 

  69. Abdel-Qader I, Pashaie-Rad S, Abudayyeh O, Yehia S (2006) PCA-based algorithm for unsupervised bridge crack detection. Adv Eng Softw 37(12):771–778. https://doi.org/10.1016/j.advengsoft.2006.06.002

    Google Scholar 

  70. Yamaguchi T, Nakamura S, Saegusa R, Hashimoto S (2008) Image-based crack detection for real concrete surfaces. IEEJ Trans Electr Electron Eng 3(1):128–135. https://doi.org/10.1002/tee.20244

    Google Scholar 

  71. Nishikawa T, Yoshida J, Sugiyama T, Fujino Y (2012) Concrete crack detection by multiple sequential image filtering. Comput Aided Civ Infrastruct Eng 27(1):29–47. https://doi.org/10.1111/j.1467-8667.2011.00716.x

    Google Scholar 

  72. Dorafshan S, Maguire M, Qi Xi (2016) Automatic surface crack detection in concrete structures using OTSU thresholding and morphological operations. Civil and environmental engineering faculty publications. Paper 1234. https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2232&context=cee_facpub

  73. Gonzalez RC, Woods RE (2007) Image processing. Digital image processing (Second Edition). Prentice Hall, Upper Saddle River, 07458. ISBN 10: 0201508036

  74. Moon H, Kim J (2011) Intelligent crack detecting algorithm on the concrete crack image using neural network. In: Proceedings of the 28th ISARC, Seoul, Korea, pp 1461–1467

  75. Hutchinson TC, Chen Z (2006) Improved image analysis for evaluating concrete damage. J Comput Civ Eng 20(3):210–216. https://doi.org/10.1061/(ASCE)0887-3801(2006)20:3(210)

    Google Scholar 

  76. Noh Y, Koo D, Kang YM, Park D, Lee D (2017) Automatic crack detection on concrete images using segmentation via fuzzy C-means clustering. In: 2017 IEEE international conference on applied system innovation (ICASI), Sapporo, pp 877–880. https://doi.org/10.1109/icasi.2017.7988574

  77. Mohan A, Poobal S (2017) Crack detection using image processing: a critical review and analysis. Alexandria Eng J. https://doi.org/10.1016/j.aej.2017.01.020

    Google Scholar 

  78. Xu Y, Li S, Zhang D, Jin Y, Zhang F, Li N, Li H (2018) Identification framework for cracks on a steel structure surface by a restricted Boltzmann machines algorithm based on consumer-grade camera images. Struct Control Health Monit 25(2):e2075. https://doi.org/10.1002/stc.2075

    Google Scholar 

  79. Gaydeckp PA, Burdekin FM (1998) Nondestructive testing of reinforced and pre-stressed concrete structures. Nondestruct Test Eval 14(6):339–392. https://doi.org/10.1080/10589759808953058

    Google Scholar 

  80. DelGrande N, Durbin PF (1999) Delamination detection in reinforced concrete using thermal inertia. In: Proc. SPIE 3587, nondestructive evaluation of bridges and highways III. https://doi.org/10.1117/12.339924

  81. Tashan J, Al-Mahaidi R (2012) Investigation of the parameters that influence the accuracy of bond defect detection in CFRP bonded specimens using IR thermography. Compos Struct 94(2):519–531. https://doi.org/10.1016/j.compstruct.2011.08.017

    Google Scholar 

  82. Clark MR, McCann DM, Forde MC (2003) Application of infrared thermography to the non-destructive testing of concrete and masonry bridges. NDT E Int 36(4):265–275. https://doi.org/10.1016/S0963-8695(02)00060-9

    Google Scholar 

  83. Edis E, Flores-Colen I, de Brito J (2014) Passive thermographic detection of moisture problems in façades with adhered ceramic cladding. Constr Build Mater 51(1):187–197. https://doi.org/10.1016/j.conbuildmat.2013.10.085

    Google Scholar 

  84. Omar M, Hassan MI, Saito K, Alloo R (2005) IR self-referencing thermography for detection of in-depth defects. Infrared Phys Technol 46(4):283–289. https://doi.org/10.1016/j.infrared.2004.04.005

    Google Scholar 

  85. Aggelis DG, Kordatos EZ, Soulioti DV, Matikas TE (2010) Combined use of thermography and ultrasound for the characterization of subsurface cracks in concrete. Constr Build Mater 24(10):1888–1897. https://doi.org/10.1016/j.conbuildmat.2010.04.014

    Google Scholar 

  86. Runnemalm A, Broberg P, Henrikson P (2014) Ultraviolet excitation for thermography inspection of surface cracks in welded joints. Nondestruct Test Eval 29(4):332–344. https://doi.org/10.1080/10589759.2014.941842

    Google Scholar 

  87. Omar T, Nehdi ML (2017) Remote sensing of concrete bridge decks using unmanned aerial vehicle infrared thermography. Autom Construct 83:360–371. https://doi.org/10.1016/j.autcon.2017.06.024

    Google Scholar 

  88. Wells J, Lovelace B (2017) Unmanned aircraft system bridge inspection demonstration project phase II (no. MN/RC 2017-18). http://dot.state.mn.us/research/reports/2017/201718.pdf

  89. Murphy RR, Steimle E, Griffin C, Cullins C, Hall M, Pratt K (2008) Cooperative use of unmanned sea surface and micro aerial vehicles at Hurricane Wilma. J Field Robot 25(3):164–180. https://doi.org/10.1002/rob.20235

    Google Scholar 

  90. Giordan D, Manconi A, Remondino F, Nex F (2017) Use of unmanned aerial vehicles in monitoring application and management of natural hazards. J Geomat Nat Hazards Risk 8(1):1–4. https://doi.org/10.1080/19475705.2017.1315619

    Google Scholar 

  91. Qi J, Song D, Shang H, Wang N, Hua C, Wu C, Han J (2016) Search and rescue rotary wing uav and its application to the Lushan Ms 7.0 earthquake. J Field Robot 33(3):290–321. https://doi.org/10.1002/rob.21615

    Google Scholar 

  92. Adams SM, Levitan ML, Friedland CJ (2013) High resolution imagery collection utilizing unmanned aerial vehicles (UAVs) for post-disaster studies. In: ATC & SEI conference on advances in Hurricane engineering: learning from our past, Miami, Florida, pp 777–793. https://doi.org/10.1061/9780784412626.067

  93. Dai F, Dong S, Kamat VR, Lu M (2011) Photogrammetry assisted measurement of interstory drift for rapid post-disaster building damage reconnaissance. J Nondestr Eval 30(3):201–212. https://doi.org/10.1007/s10921-011-0108-6

    Google Scholar 

  94. Xu Z, Yang J, Peng C, Wu Y, Jiang X, Li R, Tian B (2014) Development of an UAS for post-earthquake disaster surveying and its application in Ms7. 0 Lushan Earthquake, Sichuan, China. Comput Geosci 68:22–30. https://doi.org/10.1016/j.cageo.2014.04.001

    Google Scholar 

  95. Vetrivel A, Gerke M, Kerle N, Vosselman G (2016) Identification of structurally damaged areas in airborne oblique images using a visual-Bag-of-Words approach. Remote Sens 8(3):231–253. https://doi.org/10.3390/rs8030231

    Google Scholar 

  96. Metni N, Hamel T (2007) A UAV for bridge inspection: visual serving control law with orientation limits. Autom Construct 17(1):3–10. https://doi.org/10.1016/j.autcon.2006.12.010

    Google Scholar 

  97. Oh JK, Jang G, Oh S, Lee JH, Yi BJ, Moon YS, Choi Y (2009) Bridge inspection robot system with machine vision. Autom Construct 18(7):929–941. https://doi.org/10.1016/j.autcon.2009.04.003

    Google Scholar 

  98. Sutter B, Lelevé A, Pham MT, Gouin O, Jupille N, Kuhn M, Rémy P (2018) A semi-autonomous mobile robot for bridge inspection. Autom Construct 91:111–119. https://doi.org/10.1016/j.autcon.2018.02.013

    Google Scholar 

  99. Escobar-Wolf R, Oommen T, Brooks CN, Dobson RJ, Ahlborn TM (2017) Unmanned aerial vehicle (UAV)-based assessment of concrete bridge deck delamination using thermal and visible camera sensors: a preliminary analysis. Res Nondestr Eval. https://doi.org/10.1080/09349847.2017.1304597

    Google Scholar 

  100. Brooks C, Dobson RJ, Banach DM, Dean D, Oommen T, Wolf RE, Hart B (2015) Evaluating the use of unmanned aerial vehicles for transportation purposes (No. RC-1616). Michigan Tech Research Institute, Ann Arbor. https://www.michigan.gov/documents/mdot/RC1616_Part_C_488517_7.pdf

  101. Lim RS, La HM, Sheng W (2014) A robotic crack inspection and mapping system for bridge deck maintenance. IEEE Trans Autom Sci Eng 11(2):367–378. https://doi.org/10.1109/TASE.2013.2294687

    Google Scholar 

  102. Morgenthal G, Hallermann N (2014) Quality assessment of unmanned aerial vehicle (UAV) based visual inspection of structures. Adv Struct Eng 17(3):289–302. https://doi.org/10.1260/1369-4332.17.3.289

    Google Scholar 

  103. Sankarasrinivasan S, Balasubramanian E, Karthik K, Chandrasekar U, Gupta R (2015) Health monitoring of civil structures with integrated UAV and image processing system. Proc Comput Sci 54(2015):508–515. https://doi.org/10.1016/j.procs.2015.06.058

    Google Scholar 

  104. Krishna K, Murty MN (1999) Genetic K-means algorithm. IEEE Trans Syst Man Cybernet Part B (Cybernet) 29(3):433–439. https://doi.org/10.1109/3477.764879

    Google Scholar 

  105. Ellenberg A, Kontsos A, Moon F, Bartoli I (2016) Bridge related damage quantification using unmanned aerial vehicle imagery. Struct Control Health Monit 23(9):1168–1179. https://doi.org/10.1002/stc.1831

    Google Scholar 

  106. Talab AMA, Huang Z, Xi F, HaiMing L (2016) Detection crack in image using Otsu method and multiple filtering in image processing techniques. Optik-Int J Light Electron Opt 127(3):1030–1033. https://doi.org/10.1016/j.ijleo.2015.09.147

    Google Scholar 

  107. Dorafshan S, Coopmans C, Thomas R, Maguire M (2018) Deep learning neural networks for sUAS-assisted structural inspections: feasibility and application, ICUAS18. IEEE. Dallas Marriot City Center, Dallas

  108. Dorsey (2016), AASHTO special report (fact sheet AASHTO created to accompany the survey report) https://indd.adobe.com/view/78d3b1d3-13c3-42c0-8bf2-75ea8c534d1a. Accessed 19 Apr 2018

  109. Irizarry J, Johnson EN (2014). Feasibility study to determine the economic and operational benefits of utilizing unmanned aerial vehicles (UAVs). FHWA-GA-1H-12-38. Georgia Institute of Technology. https://smartech.gatech.edu/handle/1853/52810?show=full

  110. Otero LD, Gagliardo N, Dalli D, Huang WH, Cosentino P (2015). Proof of concept for using unmanned aerial vehicles for high mast pole and bridge inspections (No. BDV28 TWO 977-02). Florida Institute of Technology. https://rosap.ntl.bts.gov/view/dot/29176/dot_29176_DS1.pdf?

  111. Kanistras K, Martins G, Rutherford MJ, Valavanis KP (2015) Survey of unmanned aerial vehicles (UAVs) for traffic monitoring. In: Handbook of unmanned aerial vehicles. Springer, Netherlands, pp 2643–2666

  112. Coifman B, McCord M, Mishalani M, Redmill K (2004) Surface transportation surveillance from unmanned aerial vehicles. In: Proc., 83rd annual meeting of the transportation research board, pp 11–20

  113. Srinivasan S, Latchman H, Shea J, Wong T, McNair J (2004) Airborne traffic surveillance systems: video surveillance of highway traffic. In: Proceedings of the ACM 2nd international workshop on Video surveillance and sensor networks, New York, pp 131–135

  114. McCormack ED, Trepanier T (2008) The use of small unmanned aircraft by the Washington State Department of Transportation (No. WA-RD 703.1). Research Report, Washington State Department of Transportation, Olympia. https://www.wsdot.wa.gov/research/reports/fullreports/703.1.pdf

  115. Barfuss SL, Jensen A, Clemens S (2012) Evaluation and development of unmanned aircraft (UAV) for UDOT needs (No. UT-12.08). Salt Lake City. https://www.udot.utah.gov/main/uconowner.gf?n=10710706202834543

  116. FAA (2017). Aeronautical information manual: official guide to basic flight information and ATC procedures. U.S. Department of Transportation. https://www.faa.gov/air_traffic/publications/media/AIM_Basic_dtd_10-12-17.pdf. Accessed 19 Apr 2018

  117. Dorafshan S, Maguire M, Hoffer NV, Coopmans C (2017) Challenges in bridge inspection using small unmanned aerial systems: results and lessons learned. In: 2017 IEEE international conference on unmanned aircraft systems (ICUAS17), Miami, pp 1722–1730. https://doi.org/10.1109/icuas.2017.7991459

  118. Dorafshan S, Thomas R, Maguire M (2018) Fatigue crack detection using unmanned aerial systems in fracture critical inspection of steel bridges. ASCE J Bridge Eng Special collection on non-contact sensing technologies for bridge structural health assessment. https://doi.org/10.1061/(asce)be.1943-5592.0001291

  119. Yang CH, Wen MC, Chen YC, Kang SC (2015) An optimized unmanned aerial system for bridge inspection. ISARC. Proc Int Sympos Autom Robot Construct 32:1–6

    Google Scholar 

  120. Chan B, Guan H, Jo J, Blumenstein M (2015) Towards UAV-based bridge inspection systems: a review and an application perspective. Struct Monit Mainten 2(3):283–300. https://doi.org/10.12989/smm.2015.2.3.283

  121. Broberg P (2013) Surface crack detection in welds using thermography. NDT and E Int 57(2013):69–73. https://doi.org/10.1016/j.ndteint.2013.03.008

    Google Scholar 

  122. Rodríguez-Martín M, Lagüela S, González-Aguilera D, Martínez J (2016) Thermographic test for the geometric characterization of cracks in welding using IR image rectification. Autom Construct 61:58–65. https://doi.org/10.1016/j.autcon.2015.10.012

    Google Scholar 

  123. Connor RJ, Dexter RJ, Mahmoud H (2005) NCHRP Synthesis 354: Inspection and management of bridges with fracture-critical details, vol 354. Transportation Research Board, Washington D C. https://doi.org/10.17226/13887

  124. Haghighat MBA, Aghagolzadeh A, Seyedarabi H (2011) A non-reference image fusion metric based on mutual information of image features. Comput Electr Eng 37(5):744–756. https://doi.org/10.1016/j.compeleceng.2011.07.012

    MATH  Google Scholar 

  125. Xiong N, Svensson P (2002) Multi-sensor management for information fusion: issues and approaches. Inf Fusion 3(2):163–186. https://doi.org/10.1016/S1566-2535(02)00055-6

    Google Scholar 

  126. Gross GA, Nagi R, Sambhoos K, Schlegel DR, Shapiro SC, Tauer G (2012) Towards hard + soft data fusion: processing architecture and implementation for the joint fusion and analysis of hard and soft intelligence data. In: 2012 15th International Conference on Information Fusion (FUSION). IEEE, Singapore, pp 955–962

  127. Shen Z, Jensen W (2015) Integrated 3D Bridge-condition visualization (BCV) to facilitate element-based bridge condition rating (EBCR). Nebraska Department of Roads Research Reports. Report M004. Lincoln. http://digitalcommons.unl.edu/ndor/168/

  128. Maldague X (2001) Theory and practice of infrared technology for nondestructive testing. Wiley, INC, New York. ISBN 978-0-471-18190-3

    Google Scholar 

  129. Lee S, Kalos N (2015) Bridge inspection practices using non-destructive testing methods. J Civ Eng Manage 21(5):654–665. https://doi.org/10.1061/9780784413517.132

    Google Scholar 

  130. Dorafshan S, Maguire M, Chang M (2017) Comparing automated image-based crack detection techniques in spatial and frequency domains. In: 26th ASNT research symposium, Jacksonville

  131. Werrell KP (1998) Dark eagles: a history of top secret US aircraft programs. J Milit Hist 62(1):225–226

    Google Scholar 

  132. McDaid H, Oliver D (1997) Smart weapons: top secret history of remote controlled airborne weapons. Barnes & Noble, New York

    Google Scholar 

  133. Bone E, Bolkcom C (2003) Unmanned aerial vehicles: background and issues for congress. Library of Congress. Washington DC Congressional Research Service

  134. Bendig J, Yu K, Aasen H, Bolten A, Bennertz S, Broscheit J, Bareth G (2015) Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int J Appl Earth Obs Geoinf 39(2015):79–87. https://doi.org/10.1016/j.jag.2015.02.012

    Google Scholar 

  135. Urbahs A, Jonaite I (2013) Features of the use of unmanned aerial vehicles for agriculture applications. Aviation 17(4):170–175. https://doi.org/10.3846/16487788.2013.861224

    Google Scholar 

  136. Grenzdörffer GJ, Niemeyer F (2011) UAV based BRDF-measurements of agricultural surfaces with PFIFFikus. Int Arch Photogram Remot Sens Spatial Inf Sci 38:229–234

    Google Scholar 

  137. Huang Y, Hoffmann WC, Lan Y, Wu W, Fritz BK (2009) Development of a spray system for an unmanned aerial vehicle platform. Appl Eng Agric 25(6):803–809. https://doi.org/10.13031/2013.29229

    Google Scholar 

  138. Li J, Zhang F, Qian X, Zhu Y, Shen G (2015) Quantification of rice canopy nitrogen balance index with digital imagery from unmanned aerial vehicle. Remote Sens Lett 6(3):183–189. https://doi.org/10.1080/2150704X.2015.1021934

    Google Scholar 

  139. Torres-Sánchez T, Peña JM, De Castro AI, López-Granados F (2014) Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput Electron Agric 103:104–113. https://doi.org/10.1016/j.compag.2014.02.009

    Google Scholar 

  140. Wallace L, Lucieer A, Watson C, Turner D (2012) Development of a UAV-LiDAR system with application to forest inventory. Remote Sens 4(6):1519–1543. https://doi.org/10.3390/rs4061519

    Google Scholar 

  141. Dandois JP, Ellis EC (2013) High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision. Remote Sens Environ 136:259–276. https://doi.org/10.1016/j.rse.2013.04.005

    Google Scholar 

  142. Klemas VV (2015) Coastal and environmental remote sensing from unmanned aerial vehicles: an overview. J Coastal Res 31(5):1260–1267

    Google Scholar 

  143. Recchiuto CT, Sgorbissa A (2017) Post disaster assessment with unmanned aerial vehicles: a survey on practical implementations and research approaches. J Field Robot. https://doi.org/10.1002/rob.21756

    Google Scholar 

  144. Ambrosia VG, Wegener S, Zajkowski T, Sullivan DV, Buechel S, Enomoto F, Hinkley E (2011) The Ikhana unmanned airborne system (UAS) western states fire imaging missions: from concept to reality (2006–2010). Geocarto Int 26(2):85–101. https://doi.org/10.1080/10106049.2010.539302

    Google Scholar 

  145. Han J, Xu Y, Di L, Chen Y (2013) Low-cost multi-UAV technologies for contour mapping of nuclear radiation field. J Intell Rob Syst 70(1–4):401–410. https://doi.org/10.1007/s10846-012-9722-5

    Google Scholar 

  146. Liu P, Li X, Qu JJ, Wang W, Zhao C, Pichel W (2011) Oil spill detection with fully polarimetric UAVSAR data. Mar Pollut Bull 62(12):2611–2618. https://doi.org/10.1016/j.marpolbul.2011.09.036

    Google Scholar 

  147. Tamminga AD, Eaton BC, Hugenholtz CH (2015) UAS-based remote sensing of fluvial change following an extreme flood event. Earth Surf Proc Land 40(11):1464–1476. https://doi.org/10.1002/esp.3728

    Google Scholar 

  148. Bernard M, Kondak K, Maza I, Ollero A (2011) Autonomous transportation and deployment with aerial robots for search and rescue missions. J Field Robot 28(6):914–931. https://doi.org/10.1002/rob.20401

    Google Scholar 

  149. Desikan P, Karunakaran K, Gokulnath G (2013) Design of an aquatic park and salvation of endangered aquatic species in its natural habitat. APCBEE Proc 5:197–202. https://doi.org/10.1016/j.apcbee.2013.05.035

    Google Scholar 

  150. d’Oleire-Oltmanns S, Marzolff I, Peter KD, Ries JB (2012) Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sens 4(11):3390–3416

    Google Scholar 

  151. de Haas T, Ventra D, Carbonneau PE, Kleinhans MG (2014) Debris-flow dominance of alluvial fans masked by runoff reworking and weathering. Geomorphology 217:165–181. https://doi.org/10.1016/j.geomorph.2014.04.028

    Google Scholar 

  152. Martin PG, Payton OD, Fardoulis JS, Richards DA, Scott TB (2015) The use of unmanned aerial systems for the mapping of legacy uranium mines. J Environ Radioact 143:135–140

    Google Scholar 

  153. Shahbazi M, Théau J, Ménard P (2014) Recent applications of unmanned aerial imagery in natural resource management. GISci Remote Sens 51(4):339–365. https://doi.org/10.1080/15481603.2014.926650

    Google Scholar 

  154. Jizhou W, Zongjian L, Chengming L (2004) Reconstruction of buildings from a single UAV image. In Proc. international society for photogrammetry and remote sensing congress. Hannover, pp 100–103

  155. Koutsoudis A, Vidmar B, Ioannakis G, Arnaoutoglou F, Pavlidis G, Chamzas C (2014) Multi-image 3D reconstruction data evaluation. J Cult Heritage 15(1):73–79. https://doi.org/10.1016/j.culher.2012.12.003

    Google Scholar 

  156. Jin H, Cremers D, Wang D, Prados E, Yezzi A, Soatto S (2008) 3-d reconstruction of shaded objects from multiple images under unknown illumination. Int J Comput Vis 76(3):245–256. https://doi.org/10.1007/s11263-007-0055-y

    Google Scholar 

  157. Furukawa Y, Curless B, Seitz SM, Szeliski R (2010) Towards internet-scale multi-view stereo. In: Computer vision and pattern recognition (CVPR), 2010 IEEE conference on. IEEE, San Francisco, pp 1434–1441. http://dx.doi.org/10.1109/CVPR.2010.5539802

  158. Siebert S, Teizer J (2014) Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Autom Construct 41:1–14. https://doi.org/10.1016/j.autcon.2014.01.004

    Google Scholar 

  159. Rogers K, Finn A (2013) Three-dimensional UAV-based atmospheric tomography. J Atmos Ocean Technol 30(2):336–344. https://doi.org/10.1175/JTECH-D-12-00036.1

    Google Scholar 

  160. Dunham KM (2012) Trends in populations of elephant and other large herbivores in Gonarezhou National Park, Zimbabwe, as revealed by sample aerial surveys. Afr J Ecol 50(4):476–488. https://doi.org/10.1111/j.1365-2028.2012.01343.x

    Google Scholar 

  161. Mehrotra R, Nichani S, Ranganathan N (1990) Corner detection. Pattern Recogn 23(11):1223–1233. https://doi.org/10.1016/0031-3203(90)90118-5

    Google Scholar 

  162. Remondino F, El-Hakim S (2006) Image-based 3D modelling: a review. Photogram Rec 21(115):269–291. https://doi.org/10.1111/j.1477-9730.2006.00383.x

    Google Scholar 

  163. Lindeberg T (1998) Edge detection and ridge detection with automatic scale selection. Int J Comput Vis 30(2):117–156. https://doi.org/10.1023/A:1008097225773

    Google Scholar 

  164. Chandrasekhar V, Chen DM, Lin A, Takacs G, Tsai SS, Cheung NM, Girod B (2010) Comparison of local feature descriptors for mobile visual search. In: 17th IEEE international conference on image processing (ICIP) . Hong Kong, pp 3885–3888

  165. Wang L, Chu CHH (2009) 3D building reconstruction from LiDAR data. In: IEEE international conference on systems, man and cybernetics, (SMC 2009). San Antonio, pp 3054–3059. https://doi.org/10.1109/icsmc.2009.5345938

  166. Bruno S, De Fino M, Fatiguso F (2018) Historic building information modelling: performance assessment for diagnosis-aided information modelling and management. Autom Construct 86:256–276. https://doi.org/10.1016/j.autcon.2017.11.009

    Google Scholar 

  167. Harwin S, Lucieer A (2012) An accuracy assessment of georeferenced point clouds produced via multi-view stereo techniques applied to imagery acquired via unmanned aerial vehicle. In: ISPRS (international archives of the photogrammetry, remote sensing and spatial information sciences), ISPRS congress. Melbourne, pp 475–480. https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-183-2011

  168. Zhang C, Elaksher A (2012) An unmanned aerial vehicle-based imaging system for 3D measurement of unpaved road surface distresses. Comput Aid Civ Infrastruct Eng 27(2):118–129. https://doi.org/10.1111/j.1467-8667.2011.00727.x

    Google Scholar 

  169. Kuo CH, Leber A, Kuo CM, Boller C, Eschmann C, Kurz J (2013) Unmanned robot system for Structure health monitoring and non-destructive building inspection, current technologies overview and future improvements. In: Proc. of the 9th international workshop on SHM, Stanford Univ., Stanford/CA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sattar Dorafshan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorafshan, S., Maguire, M. Bridge inspection: human performance, unmanned aerial systems and automation. J Civil Struct Health Monit 8, 443–476 (2018). https://doi.org/10.1007/s13349-018-0285-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-018-0285-4

Keywords

Navigation