Skip to main content
Log in

On the set of local extrema of a subanalytic function

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

Let \({\mathfrak {F}}\) be a category of subanalytic subsets of real analytic manifolds that is closed under basic set-theoretical operations (locally finite unions, difference and product) and basic topological operations (taking connected components and closures). Let M be a real analytic manifold and denote \({\mathfrak {F}}(M)\) the family of the subsets of M that belong to the category \({\mathfrak {F}}\). Let \(f:X\rightarrow \mathbb {R}\) be a subanalytic function on a subset \(X\in {\mathfrak {F}}(M)\) such that the inverse image under f of each interval of \(\mathbb {R}\) belongs to \({\mathfrak {F}}(M)\). Let \(\mathrm{Max}(f)\) be the set of local maxima of f and consider its level sets \(\mathrm{Max}_\lambda (f):=\mathrm{Max}(f)\cap \{f=\lambda \}=\{f=\lambda \}{\setminus }{\text {Cl}}(\{f>\lambda \})\) for each \(\lambda \in \mathbb {R}\). In this work we show that if f is continuous, then \(\mathrm{Max}(f)=\bigsqcup _{\lambda \in \mathbb {R}}\mathrm{Max}_\lambda (f)\in {\mathfrak {F}}(M)\) if and only if the family \(\{\mathrm{Max}_\lambda (f)\}_{\lambda \in \mathbb {R}}\) is locally finite in M. If we erase continuity condition, there exist subanalytic functions \(f:X\rightarrow M\) such that \(\mathrm{Max}(f)\in {\mathfrak {F}}(M)\), but the family \(\{\mathrm{Max}_\lambda (f)\}_{\lambda \in \mathbb {R}}\) is not locally finite in M or such that \(\mathrm{Max}(f)\) is connected but it is not even subanalytic. We show in addition that if \({\mathfrak {F}}\) is the category of subanalytic sets and \(f:X\rightarrow \mathbb {R}\) is a (non-necessarily continuous) subanalytic map f that maps relatively compact subsets of M contained in X to bounded subsets of \(\mathbb {R}\), then \(\mathrm{Max}(f)\in {\mathfrak {F}}(M)\) and the family \(\{\mathrm{Max}_\lambda (f)\}_{\lambda \in \mathbb {R}}\) is locally finite in M. An example of this type of functions are continuous subanalytic functions on closed subanalytic subsets of M. The previous results imply that if \({\mathfrak {F}}\) is either the category of semianalytic sets or the category of C-semianalytic sets and f is the restriction to an \({\mathfrak {F}}\)-subset of M of an analytic function on M, then the family \(\{\mathrm{Max}_\lambda (f)\}_{\lambda \in \mathbb {R}}\) is locally finite in M and \(\mathrm{Max}(f)=\bigsqcup _{\lambda \in \mathbb {R}}\mathrm{Max}_\lambda (f)\in {\mathfrak {F}}(M)\). We also show that if the category \({\mathfrak {F}}\) contains the intersections of algebraic sets with real analytic submanifolds and \(X\in {\mathfrak {F}}(M)\) is not closed in M, then there exists a continuous subanalytic function \(f:X\rightarrow \mathbb {R}\) with graph belonging to \({\mathfrak {F}}(M\times \mathbb {R})\) such that inverse images under f of the intervals of \(\mathbb {R}\) belong to \({\mathfrak {F}}(M)\) but \(\mathrm{Max}(f)\) does not belong to \({\mathfrak {F}}(M)\). As subanalytic sets are locally connected, the set of non-openness points of a continuous subanalytic function \(f:X\rightarrow \mathbb {R}\) coincides with the set of local extrema \(\mathrm{Extr}(f):=\mathrm{Max}(f)\cup \mathrm{Min}(f)\). This means that if \(f:X\rightarrow \mathbb {R}\) is a continuous subanalytic function defined on a closed set \(X\in {\mathfrak {F}}(M)\) such that the inverse image under f of each interval of \(\mathbb {R}\) belongs to \({\mathfrak {F}}(M)\), then the set \(\mathrm{Op}(f)\) of openness points of f belongs to \({\mathfrak {F}}(M)\). Again the closedness of X in M is crucial to guarantee that \(\mathrm{Op}(f)\) belongs to \({\mathfrak {F}}(M)\). The type of results stated above are straightforward if \({\mathfrak {F}}\) is an o-minimal structure of subanalytic sets. However, the proof of the previous results requires further work for a category \({\mathfrak {F}}\) of subanalytic sets that does not constitute an o-minimal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acquistapace, F., Broglia, F., Fernando, J.F.: On globally defined semianalytic sets. Math. Ann. 366(1), 613–654 (2016)

    Article  MathSciNet  Google Scholar 

  2. Acquistapace, F., Díaz-Cano, A.: Divisors in global analytic sets. J. Eur. Math. Soc. (JEMS) 13(2), 297–307 (2011)

    Article  MathSciNet  Google Scholar 

  3. Balcerzak, M., Popławski, M., Wódka, J.: Local extrema and nonopenness points of continuous functions. Am. Math. Mon. 124(5), 436–443 (2017)

    Article  MathSciNet  Google Scholar 

  4. Barone-Netto, A., Gorni, G., Zampieri, G.: Local extrema of analytic functions. NoDEA Nonlinear Differ. Equ. Appl. 3(3), 287–303 (1996)

    Article  MathSciNet  Google Scholar 

  5. Bierstone, E., Milman, P.D.: Semianalytic and subanalytic sets. Inst. Ht. Études Sci. Publ. Math. 67, 5–42 (1988)

    Article  MathSciNet  Google Scholar 

  6. Bierstone, E., Milman, P.D.: Subanalytic geometry. In: Model Theory, Algebra, and Geometry, vol. 39, Mathematical Sciences Research Institute Publications, Cambridge University Press, Cambridge, pp. 151–172 (2000)

  7. Calvert, B., Vamanamurthy, M.K.: Local and global extrema for functions of several variables. J. Aust. Math. Soc. Ser. A 29(3), 362–368 (1980)

    Article  MathSciNet  Google Scholar 

  8. Church, P.T., Timourian, J.G.: Real analytic open maps. Pac. J. Math. 50, 37–42 (1974)

    Article  MathSciNet  Google Scholar 

  9. Coen, S.: Sul rango dei fasci coerenti. Boll. Un. Math. Ital. 22, 373–382 (1967)

    MathSciNet  MATH  Google Scholar 

  10. Denef, J., van den Dries, L.: $p$-adic and real subanalytic sets. Ann. Math. 128(1), 79–138 (1988)

    Article  MathSciNet  Google Scholar 

  11. Denkowska, Z.: La continuité de la section d’un ensemble semi-analytique et compact. Ann. Polon. Math. 37(3), 231–242 (1980)

    Article  MathSciNet  Google Scholar 

  12. Fedeli, A., Le Donne, A.: On metric spaces and local extrema. Topol. Appl. 156(13), 2196–2199 (2009)

    Article  MathSciNet  Google Scholar 

  13. Fernando, J.F.: On the irreducible components of globally defined semianalytic sets. Math. Z. 283(3–4), 1071–1109 (2016)

    Article  MathSciNet  Google Scholar 

  14. Gabrielov, A.: Projections of semi-analytic sets. Funct. Anal. Appl. 2(4), 282–291 (1968)

    Article  MathSciNet  Google Scholar 

  15. Galbiati, M.: Stratifications et ensemble de non-cohérence d’un espace analytique réel. Invent. Math. 34(2), 113–128 (1976)

    Article  MathSciNet  Google Scholar 

  16. Gamboa, J.M., Ronga, F.: On open real polynomial maps. J. Pure Appl. Algebra 110(3), 297–304 (1996)

    Article  MathSciNet  Google Scholar 

  17. Hardt, R.M.: Homology and images of semianalytic sets. Bull. Am. Math. Soc. 80, 675–678 (1974)

    Article  MathSciNet  Google Scholar 

  18. Hardt, R.M.: Homology theory for real analytic and semianalytic sets. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2(1), 107–148 (1975)

    MathSciNet  MATH  Google Scholar 

  19. Hironaka, H.: Introduction aux ensembles sous-analytiques. In: Rédigé par André Hirschowitz et Patrick Le Barz. Singularités à Cargèse (Rencontre Singularités en Géom. Anal., Inst. Études Sci., Cargèse, (1972), Asterisque, 7 et 8, Soc. Math. France, Paris, pp. 13–20 (1973)

  20. Hironaka, H.: Subanalytic Sets. Number Theory, Algebraic Geometry and Commutative Algebra, in Honor of Yasuo Akizuki, pp. 453–493. Kinokuniya, Tokyo (1973)

    Google Scholar 

  21. Hironaka, H.: Introduction to real-analytic sets and real-analytic maps. In: Quaderni dei Gruppi di Ricerca Matematica del Consiglio Nazionale delle Ricerche. Istituto Matematico “L. Tonelli” dell’Università di Pisa, Pisa (1973)

  22. Hironaka, H.: Stratification and flatness. Real and complex singularities. In: Proceedings of Ninth Nordic Summer School/NAVF Symposium on Mathematics, Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, pp. 199–265 (1977)

    Chapter  Google Scholar 

  23. Hirsch, M.W.: Jacobians and branch points of real analytic open maps. Aequ. Math. 63(1–2), 76–80 (2002)

    Article  MathSciNet  Google Scholar 

  24. Kocel-Cynk, B.: Finite decidability of subanalytic functions. Effective methods in algebraic and analytic geometry (Bielsko-Biała, 1997). Univ. Lagel. Acta Math. 37, 151–154 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Kurdyka, K.: Des applications du théorème de Puiseux dans la théorie des ensembles semi-analytiques dans $\mathbb{R}^2$. Univ. Lagel. Acta Math. 26, 105–113 (1987)

    MATH  Google Scholar 

  26. Łojasiewicz, S.: Ensembles semi-analytiques, Cours Faculté des Sciences d’Orsay, Mimeographié I.H.E.S., Bures-sur-Yvette (1965). http://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf

  27. Łojasiewicz, S.: Triangulation of semi-analytic sets. Ann. Scuola Norm. Sup. Pisa 18, 449–474 (1964)

    MathSciNet  MATH  Google Scholar 

  28. Narasimhan, R.: Introduction to the Theory of Analytic Spaces. Lecture Notes in Mathematics. Springer, Berlin (1966)

    Book  Google Scholar 

  29. Parusiński, A.: Lipschitz properties of semi-analytic sets. Ann. Inst. Fourier (Grenoble) 38(4), 189–213 (1988)

    Article  MathSciNet  Google Scholar 

  30. Pawłucki, W.: Sur les points réguliers d’un ensemble semi-analytique. Bull. Polish Acad. Sci. Math. 32(9–10), 549–553 (1984)

    MathSciNet  MATH  Google Scholar 

  31. Shiota, M.: Geometry of subanalytic and semialgebraic sets. In: Progress in Mathematics, vol. 150, Birkhäuser Boston Inc., Boston (1997)

  32. Stasica, J.: Smooth points of a semialgebraic set. Ann. Polon. Math. 82(2), 149–153 (2003)

    Article  MathSciNet  Google Scholar 

  33. Van den Dries, L.: Tame Topology and O-minimal Structures. London Mathematical Society Lecture Note Series, vol. 248, Cambridge University Press, Cambridge (1998)

  34. van den Dries, L., Miller, C.: Geometric categories and o-minimal structures. Duke Math. J. 84(2), 497–540 (1996)

    Article  MathSciNet  Google Scholar 

  35. Wilkie, A.J.: Lectures on elimination theory for semialgebraic and subanalytic sets. In: O-minimality and Diophantine Geometry, London Mathematical Society Lecture Note series, vol. 421, Cambridge University Press, Cambridge, pp. 159–192 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José F. Fernando.

Additional information

Dedicated to my beloved friends Francesca Acquistapace and Fabrizio Broglia in occasion of their 70th birthdays.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author supported by Spanish GRAYAS MTM2014-55565-P, Spanish STRANO MTM2017-82105-P and Grupos UCM 910444.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernando, J.F. On the set of local extrema of a subanalytic function. Collect. Math. 71, 1–24 (2020). https://doi.org/10.1007/s13348-019-00245-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-019-00245-6

Keywords

Mathematics Subject Classification

Navigation