Collectanea Mathematica

, Volume 69, Issue 2, pp 263–281 | Cite as

The Cesàro operator on Korenblum type spaces of analytic functions

  • Angela A. Albanese
  • José Bonet
  • Werner J. Ricker


The spectrum of the Cesàro operator \(\mathsf {C}\), which is always continuous (but never compact) when acting on the classical Korenblum space and other related weighted Fréchet or (LB) spaces of analytic functions on the open unit disc, is completely determined. It turns out that such spaces are always Schwartz but, with the exception of the Korenblum space, never nuclear. Some consequences concerning the mean ergodicity of \(\mathsf {C}\) are deduced.


Cesàro operator Weighted spaces of analytic functions Spectrum Fréchet spaces (LB)-spaces Mean ergodicity 

Mathematics Subject Classification

Primary 47A10 47B38 Secondary 46A11 46E10 47A35 47B10 



The research of the first two authors was partially supported by the projects MTM2013-43540-P and MTM2016-76647-P. The second author gratefully acknowledges the support of the Alexander von Humboldt Foundation.


  1. 1.
    Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Albanese, A.A., Bonet, J., Ricker, W.J.: Montel resolvents and uniformly mean ergodic semigroups of linear operators. Quaest. Math. 36, 253–290 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in growth Banach spaces of analytic functions. Integral Equ. Oper. Theory 86, 97–112 (2016)CrossRefzbMATHGoogle Scholar
  4. 4.
    Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator in the Fréchet spaces \(\ell ^{p+}\) and \(L^{p-}\). Glasgow Math. J. 59, 273–287 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Albanese, A.A., Bonet, J., Ricker, W.J.: The Cesàro operator on power series spaces. Stud. Math. doi: 10.4064/sm8590-2-2017
  6. 6.
    Aleman, A.: A class of integral operators on spaces of analytic functions, In: Proceedings of the Winter School in Operator Theory and Complex Analysis, Univ. Málaga Secr. Publ., Málaga, pp. 3–30 (2007)Google Scholar
  7. 7.
    Aleman, A., Constantin, O.: Spectra of integration operators on weighted Bergman spaces. J. Anal. Math. 109, 199–231 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Aleman, A., Peláez, J.A.: Spectra of integration operators and weighted square functions. Indiana Univ. Math. J. 61, 1–19 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Aleman, A., Persson, A.-M.: Resolvent estimates and decomposable extensions of generalized Cesàro operators. J. Funct. Anal. 258, 67–98 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Aleman, A., Siskakis, A.G.: An integral operator on \(H^p\). Complex Var. Theory Appl. 28, 149–158 (1995)zbMATHGoogle Scholar
  11. 11.
    Aleman, A., Siskakis, A.G.: Integration operators on Bergman spaces. Indiana Univ. Math. J. 46, 337–356 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Barrett, D.E.: Duality between \(A^\infty \) and \(A^{- \infty }\) on domains with nondegenerate corners, Multivariable operator theory (Seattle, WA, 1993), pp. 77–87, Contemporary Math. Vol. 185, Amer. Math. Soc., Providence (1995)Google Scholar
  13. 13.
    Bierstedt, K.D., Bonet, J., Galbis, A.: Weighted spaces of holomorphic functions on bounded domains. Mich. Math. J. 40, 271–297 (1993)CrossRefzbMATHGoogle Scholar
  14. 14.
    Bierstedt, K.D., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Stud. Math. 127, 137–168 (1998)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Bierstedt, K.D., Meise, R., Summers, W.H.: A projective description of weighted inductive limits. Trans. Am. Math. Soc. 272, 107–160 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bierstedt, K.D., Summers, W.H.: Biduals of weighted Banach spaces of analytic functions. J. Aust. Math. Soc. (Ser. A) 54, 70–79 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bonet, J., Domański, P., Lindström, M., Taskinen, J.: Composition operators between weighted Banach spaces of analytic functions. J. Aust. Math. Soc. (Ser. A) 64, 101–118 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  19. 19.
    Domenig, T.: Composition operators on weighted Bergman spaces and Hardy spaces. Atomic Decompositions and Diagonal Operators, Ph.D. Thesis, University of Zürich (1997). [Zbl 0909.47025]Google Scholar
  20. 20.
    Domenig, T.: Composition operators belonging to operator ideals. J. Math. Anal. Appl. 237, 327–349 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Dunford, N., Schwartz, J.T.: Linear Operators I: General Theory. 2nd Printing. Wiley Interscience Publ., New York (1964)Google Scholar
  22. 22.
    Edwards, R.E.: Functional Analysis. Theory and Applications. Holt, Rinehart and Winston, New York, Chicago San Francisco (1965)zbMATHGoogle Scholar
  23. 23.
    Grothendieck, A.: Topological Vector Spaces. Gordon and Breach, London (1973)zbMATHGoogle Scholar
  24. 24.
    Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Graduate Texts in Mathematics, vol. 199. Springer, New York (2000)Google Scholar
  25. 25.
    Jarchow, H.: Locally Convex Spaces. Teubner, Stuttgart (1981)CrossRefzbMATHGoogle Scholar
  26. 26.
    Korenblum, B.: An extension of the Nevanlinna theory. Acta Math. 135, 187–219 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Krengel, U.: Ergodic Theorems. de Gruyter Studies in Mathematics, vol. 6. Walter de Gruyter Co., Berlin (1985)CrossRefGoogle Scholar
  28. 28.
    Lusky, W.: On the isomorphism classes of weighted spaces of harmonic and holomorphic functions. Stud. Math. 175(1), 19–40 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Meise, R., Vogt, D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997)zbMATHGoogle Scholar
  30. 30.
    Melikhov, S.N.: (DFS )-spaces of holomorphic functions invariant under differentiation. J. Math. Anal. Appl. 297, 577–586 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Persson, A.-M.: On the spectrum of the Cesàro operator on spaces of analytic functions. J. Math. Anal Appl. 340, 1180–1203 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Pietsch, A.: Nuclear Locally Convex Spaces. Springer, Berlin (1972)CrossRefzbMATHGoogle Scholar
  33. 33.
    Shields, A.L., Williams, D.L.: Bounded projections, duality and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 162, 287–302 (1971)zbMATHGoogle Scholar
  34. 34.
    Siskakis, A.: Volterra operators on spaces of analytic functions—a survey. In: Proceedings of the First Advanced Course in Operator Theory and Complex Analysis, Univ. Sevilla Serc. Publ., Seville, pp. 51–68 (2006)Google Scholar

Copyright information

© Universitat de Barcelona 2017

Authors and Affiliations

  1. 1.Dipartimento di Matematica e Fisica “E. De Giorgi”Università del SalentoLecceItaly
  2. 2.Instituto Universitario de Matemática Pura y Aplicada (IUMPA)Universitat Politècnica de ValènciaValenciaSpain
  3. 3.Math.-Geogr. FakultätKatholische Universität Eichstätt-IngolstadtEichstättGermany

Personalised recommendations