Skip to main content
Log in

The well-posedness of local solutions for a generalized Novikov equation

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

The pseudo-parabolic regularization technique is applied to establish the well-posedness of local solutions for a generalized Novikov equation in the Sobolev space \(H^s(R)\) with \(s>\frac{3}{2}\). The existence of local weak solutions for the equation in the lower order Sobolev space \(H^s\) with \(1\le s\le \frac{3}{2}\) is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bona, J.L., Smith, R.: The initial value problem for the Korteweg-De Vries equation. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 278(1287), 555–601 (1975)

    Google Scholar 

  2. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Constantin, A., Lannes, D.: The hydro-dynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 193, 165–186 (2009)

    Article  MathSciNet  Google Scholar 

  4. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hone, A.N.W., Wang, J.P.: Integrable peakon equations with cubic nonlinearity. J. Phys. A Math. Theor. 41, 372002–10 (2008)

    Article  MathSciNet  Google Scholar 

  6. Himonas, A., Holliman, C.: The Cauchy problem for the Novikov equation. Nonlinearity 25, 449–479 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Himonas, A.A., Holmes, J.: Hölder continuity of the solution map for the Novikov equation. J. Math. Phys. 54(6), 061501–061511 (2013)

    Google Scholar 

  8. Hone, A.N., Lundmark, H., Szmigielski, J.: Explicit multipeakon solutions of Novikov’s cubically nonlinear integrable Camassa–Holm type equation. Dyn. Partial Differ. Equ. 6, 253–289 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lai, S.Y., Wu, Y.H.: The local well-posedness and existence of weak solutions for a generalized Camassa–Holm equation. J. Differ. Equ. 248, 2038–2063 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Li, Y., Olver, P.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 162, 27–63 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Novikov, V.: Generalizations of the Camassa–Holm equation. J. Phys. A Math. Theor. 42, 342002–342014 (2009)

    Article  Google Scholar 

  13. Ni, L., Zhou, Y.: Well-posedness and persistence properties for the Novikov equation. J. Differ. Equ. 250, 3002–3021 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rodriguze-Blanco, G.: On the Cauchy problem for the Camassa–Holm equation. Nonlinear Anal. TMA 46, 309–327 (2001)

    Article  Google Scholar 

  15. Tiglay, F.: The periodic Cauchy problem for Novikov’s equation. Math. AP arXiv:1009.1820v1 (2010)

  16. Yin, Z.Y.: On the blow-up scenario for the generalized Camassa–Holm equation. Commun. Partial Differ. Equ. 29, 867–877 (2004)

    Article  MATH  Google Scholar 

  17. Zhou, Y.: Wave breaking for a periodic shallow water equation. J. Math. Anal. Appl. 290, 591–604 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Thanks are given to referees whose comments and suggestions are very helpful to improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoyong Lai.

Additional information

This work is supported by the Fundamental Research Funds for the Central Universities (JBK120504).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, S., Zhang, F. & Hu, H. The well-posedness of local solutions for a generalized Novikov equation. Collect. Math. 65, 257–271 (2014). https://doi.org/10.1007/s13348-013-0097-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-013-0097-0

Keywords

Mathematics Subject Classification (2000)

Navigation