Skip to main content

What Is Nature-Like Computation? A Behavioural Approach and a Notion of Programmability

Abstract

The aim of this paper is to propose an alternative behavioural definition of computation (and of a computer) based simply on whether a system is capable of reacting to the environment—the input—as reflected in a measure of programmability. This definition is intended to have relevance beyond the realm of digital computers, particularly vis-à-vis natural systems. This will be done by using an extension of a phase transition coefficient previously defined in an attempt to characterise the dynamical behaviour of cellular automata and other systems. The transition coefficient measures the sensitivity of a system to external stimuli and will be used to define the susceptibility of a system to be (efficiently) programmed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ausländer, S., Ausländer, D., Müller, M., Wieland, M., Fussenegger, M. (2012). Programmable single-cell mammalian biocomputers. Nature, 487(7405), 123-127.

    Google Scholar 

  2. Baiocchi, C. (2001). Three small universal Turing machines. In M. Margenstern, & Y. Rogozhin (Eds.), Machines, computations, and universality (MCU). LNCS (Vol. 2055, pp. 1–10). Heidelberg: Springer.

    Chapter  Google Scholar 

  3. Berlekamp, E., Conway, K., Guy, R. (1982). Winning ways for your mathematical plays (Vol. 2). New York: Academic.

    Google Scholar 

  4. Blanco, J. (2011). Interdisciplinary workshop with Javier Blanco: Ontological, epistemological and methodological aspects of computer science. Germany: University of Stuttgart.

    Google Scholar 

  5. Chaitin, G.J. (1975). A theory of program size formally identical to information theory. Journal of the Association for Computing Machinery, 22, 329-340.

    Article  Google Scholar 

  6. Chalmers, D.J. (1996). Does a rock implement every finite-state automaton? Synthese, 108(3), 309–333.

    Article  Google Scholar 

  7. Cook, M. (2004). Universality in elementary cellular automata. Complex Systems, 15, 1–40.

    Google Scholar 

  8. Copeland, J. (1996). What is computation? Synthese, 108, 224–359.

    Google Scholar 

  9. Davis, M. (2011). Universality is ubiquitous, invited lecture. History and philosophy of computing (HAPOC11), Ghent, 8 November.

  10. De Millo, R.A., Lipton, R.J., Perlis, A.J. (1979). Social processes and proofs of theorems and programs. Communications of the ACM, 22(5), 271–280.

    Article  Google Scholar 

  11. Dershowitz, N., & Gurevich, Y. (2008). A natural axiomatization of computability and proof of Church’s thesis. Bulletin of Symbolic Logic, 14(3), 299–350.

    Article  Google Scholar 

  12. Deutsch, D. (1998). The fabric of reality: The science of parallel universes and its implications. Baltimore: Penguin.

    Google Scholar 

  13. Feynman, R. (1994). The character of physical law. New York: Modern Library.

    Google Scholar 

  14. Floridi, L. (2005). Is information meaningful data? Philosophy and Phenomenological Research, 70(2), 351–370.

    Article  Google Scholar 

  15. Floridi, L. (2008). The method of levels of abstraction. Minds and Machines, 18(3), 303–329.

    Article  Google Scholar 

  16. Floridi, L. (2010). The philosophy of information as a conceptual framework. Knowledge, Technology & Policy, 23, 1–2.

    Article  Google Scholar 

  17. Fodor, J. (2000). The mind doesn’t work that way: The scope and limits of computational psychology. Cambridge, MA: MIT Press.

    Google Scholar 

  18. Fredkin, E. (1992). Finite nature. In Proceedings of the XXVIIth Rencotre de Moriond.

  19. Gandy, R. (1980). Church’s thesis and principles for mechanisms. In J. Barwise, H.J. Keisler, K. Kunen (Eds.), The Kleene symposium (pp. 123–148). Amsterdam: North-Holland.

    Chapter  Google Scholar 

  20. Illachinski, A. (2001). Cellular automata: A discrete universe. Singapore: World Scientific Publishing Co.

    Book  Google Scholar 

  21. Kolmogorov, A.N. (1965). Three approaches to the quantitative definition of information. Problems of Information and Transmission, 1(1), 1–7.

    Google Scholar 

  22. Kudlek, M., & Rogozhin, Y. (2002). A universal Turing machine with 3 states and 9 symbols. In W. Kuich, G. Rozenberg, A. Salomaa (Eds.), Developments in language theory (DLT) 2001. LNCS (Vol. 2295, pp. 311–318).

  23. Lloyd, S. (2002). Computational capacity of the universe. Physical Review Letters, 237901, 88.

    Google Scholar 

  24. Lloyd, S. (2006). Programming the universe: a quantum computer scientist takes on the cosmos. New York: Knopf.

    Google Scholar 

  25. Margenstern, M. (2010). Turing machines with two letters and two states. Complex Systems, 19(1).

  26. Margolus, N. (1984). Physics-like models of computation. Physica, 10D, 81–95.

    Google Scholar 

  27. Martinez, G.J., Seck-Touh-Mora, J.C., Zenil, H. (2012). Computation and universality: class IV versus class III cellular automata. Journal of Cellular Automata (in press).

  28. Minsky, M.A. (1960). 6-symbol 7-state universal, Turing machines. Technical Report 54-G-027, MIT.

  29. Neary, T., & Woods, D. (2009). Four small universal Turing machines. Fundamenta Informaticae, 91(1), 123–144.

    Google Scholar 

  30. Perlis, A.J. (1982). Epigrams on programming. SIGPLAN Notices, 17(9), 7–13.

    Article  Google Scholar 

  31. Piccinini, G. (2007). Computing mechanisms. Philosophy of Science, 74, 501–526.

    Article  Google Scholar 

  32. Piccinini, G. (2008). Computation without representation. Philosophical Studies, 137, 2.

    Article  Google Scholar 

  33. Putnam, H. (1988). Representation and reality. Cambridge: MIT Press.

    Google Scholar 

  34. Rogozhin, Y. (1996). Small universal Turing machines. Theoretical Computer Science, 168(2), 215–240.

    Article  Google Scholar 

  35. Scheutz, M. (1999). When physical systems realize functions. Minds and Machines, 9, 161–196.

    Article  Google Scholar 

  36. Scott, D.S. (1970). Outline of a mathematical theory of computation. England: Technical Monograph PRG-2, Oxford University Computing Laboratory.

    Google Scholar 

  37. Searle, J.R. (1980). Minds brains, and programs. Behavioral and Brain Sciences, 3, 417–457.

    Article  Google Scholar 

  38. Shagrir, O. (2006). Why we view the brain as a computer. Synthese, 153, 393–416.

    Article  Google Scholar 

  39. Sieg, W. (2012). Step by recursive step: Church’s analysis of effective calculability (with a postscript). In H. Zenil (Ed.), A computable universe, understanding computation & exploring nature as computation. Singapore: World Scientific.

    Google Scholar 

  40. Smith, A. (2012). The Wolfram 2,3 Turing machine research prize. http://www.wolframscience.com/prizes/tm23/solved.html. Accessed 10 April 2012.

  41. Smith, B.C. (1996). On the origins of objects. Cambridge: MIT Press.

    Google Scholar 

  42. Smith, B.C. (2002). The foundations of computing. http://www.ageofsignificance.org/people/bcsmith/print/smith-foundtns.pdf. Accessed 18 August 2012.

  43. Smith, B.C. (2010). Age of significance. http://www.ageofsignificance.org/. Accessed 18 August 2012.

  44. Sutner, K. (2011). Computational, processes, observers and turing incompleteness. Theoretical Computer Science, 412, 183–190.

    Article  Google Scholar 

  45. Turner, R. (2011). Specification. Minds and Machines, 21(2), 135–152.

    Article  Google Scholar 

  46. Watanabe, S. (1972). 4-Symbol 5-state universal Turing machine. Information Processing Society of Japan Magazine, 13(9), 588–592.

    Google Scholar 

  47. Wheeler, J.A. (1990). Information, physics, quantum: the search for links. In W. Zurek (Ed.), Complexity entropy, and the physics of information. Reading: Addison-Wesley.

    Google Scholar 

  48. Wolfram, S. (1984). Cellular automata as models of complexity. Nature, 311, 419–424.

    Article  Google Scholar 

  49. Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media.

    Google Scholar 

  50. Zenil, H. (2010). Compression-based investigation of the behaviour of cellular automata and other systems. Complex Systems, 19(2).

  51. Zenil, H. (2012a). On the dynamic qualitative behaviour of universal computation. Complex Systems, 20(3), 265–278.

    Google Scholar 

  52. Zenil, H. (2012b). A Turing test-inspired approach to computation, Turing in context II. Brussels (forthcoming).

  53. Zenil, H. (2012c). Nature-like computation and programmability. In G. Dodig-Crnkovic, & R. Giovagnoli (Eds.), A behavioural foundation for natural computing and a programmability test. Heidelberg: Springer (in press).

    Google Scholar 

  54. Zenil, H. (2012d). Programmability for natural computation and the game of life as a case study. Journal of Experimental and Theoretical Artificial Intelligence (in press).

  55. Zenil, H., Soler-Toscano, F., Joosten, J.J. (2012). Empirical encounters with computational irreducibility and unpredictability. Minds and Machines, 21(3), 149–165.

    Article  Google Scholar 

Download references

Acknowledgements

I am indebted to the generous reviewers whose comments have helped improve the presentation of this article. I also wish to thank the FQXi for the mini-grant awarded by way of the Silicon Valley Foundation under the title “Time and Computation”, in connection to behaviour as studied in this project (mini-grant no. 2011-93849 (4661)).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hector Zenil.

Additional information

Philosophy & Technology, Springer 2012 (special issue on History and Philosophy of Computing).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zenil, H. What Is Nature-Like Computation? A Behavioural Approach and a Notion of Programmability. Philos. Technol. 27, 399–421 (2014). https://doi.org/10.1007/s13347-012-0095-2

Download citation

Keywords

  • Natural computation
  • Programmability
  • Compressibility
  • Philosophy of computation
  • Turing universality
  • Cellular automata