Philosophy & Technology

, Volume 27, Issue 3, pp 399–421 | Cite as

What Is Nature-Like Computation? A Behavioural Approach and a Notion of Programmability

  • Hector Zenil
Special Issue


The aim of this paper is to propose an alternative behavioural definition of computation (and of a computer) based simply on whether a system is capable of reacting to the environment—the input—as reflected in a measure of programmability. This definition is intended to have relevance beyond the realm of digital computers, particularly vis-à-vis natural systems. This will be done by using an extension of a phase transition coefficient previously defined in an attempt to characterise the dynamical behaviour of cellular automata and other systems. The transition coefficient measures the sensitivity of a system to external stimuli and will be used to define the susceptibility of a system to be (efficiently) programmed.


Natural computation Programmability Compressibility Philosophy of computation Turing universality Cellular automata 



I am indebted to the generous reviewers whose comments have helped improve the presentation of this article. I also wish to thank the FQXi for the mini-grant awarded by way of the Silicon Valley Foundation under the title “Time and Computation”, in connection to behaviour as studied in this project (mini-grant no. 2011-93849 (4661)).


  1. Ausländer, S., Ausländer, D., Müller, M., Wieland, M., Fussenegger, M. (2012). Programmable single-cell mammalian biocomputers. Nature, 487(7405), 123-127.Google Scholar
  2. Baiocchi, C. (2001). Three small universal Turing machines. In M. Margenstern, & Y. Rogozhin (Eds.), Machines, computations, and universality (MCU). LNCS (Vol. 2055, pp. 1–10). Heidelberg: Springer.CrossRefGoogle Scholar
  3. Berlekamp, E., Conway, K., Guy, R. (1982). Winning ways for your mathematical plays (Vol. 2). New York: Academic.Google Scholar
  4. Blanco, J. (2011). Interdisciplinary workshop with Javier Blanco: Ontological, epistemological and methodological aspects of computer science. Germany: University of Stuttgart.Google Scholar
  5. Chaitin, G.J. (1975). A theory of program size formally identical to information theory. Journal of the Association for Computing Machinery, 22, 329-340.CrossRefGoogle Scholar
  6. Chalmers, D.J. (1996). Does a rock implement every finite-state automaton? Synthese, 108(3), 309–333.CrossRefGoogle Scholar
  7. Cook, M. (2004). Universality in elementary cellular automata. Complex Systems, 15, 1–40.Google Scholar
  8. Copeland, J. (1996). What is computation? Synthese, 108, 224–359.Google Scholar
  9. Davis, M. (2011). Universality is ubiquitous, invited lecture. History and philosophy of computing (HAPOC11), Ghent, 8 November.Google Scholar
  10. De Millo, R.A., Lipton, R.J., Perlis, A.J. (1979). Social processes and proofs of theorems and programs. Communications of the ACM, 22(5), 271–280.CrossRefGoogle Scholar
  11. Dershowitz, N., & Gurevich, Y. (2008). A natural axiomatization of computability and proof of Church’s thesis. Bulletin of Symbolic Logic, 14(3), 299–350.CrossRefGoogle Scholar
  12. Deutsch, D. (1998). The fabric of reality: The science of parallel universes and its implications. Baltimore: Penguin.Google Scholar
  13. Feynman, R. (1994). The character of physical law. New York: Modern Library.Google Scholar
  14. Floridi, L. (2005). Is information meaningful data? Philosophy and Phenomenological Research, 70(2), 351–370.CrossRefGoogle Scholar
  15. Floridi, L. (2008). The method of levels of abstraction. Minds and Machines, 18(3), 303–329.CrossRefGoogle Scholar
  16. Floridi, L. (2010). The philosophy of information as a conceptual framework. Knowledge, Technology & Policy, 23, 1–2.CrossRefGoogle Scholar
  17. Fodor, J. (2000). The mind doesn’t work that way: The scope and limits of computational psychology. Cambridge, MA: MIT Press.Google Scholar
  18. Fredkin, E. (1992). Finite nature. In Proceedings of the XXVIIth Rencotre de Moriond.Google Scholar
  19. Gandy, R. (1980). Church’s thesis and principles for mechanisms. In J. Barwise, H.J. Keisler, K. Kunen (Eds.), The Kleene symposium (pp. 123–148). Amsterdam: North-Holland.CrossRefGoogle Scholar
  20. Illachinski, A. (2001). Cellular automata: A discrete universe. Singapore: World Scientific Publishing Co.CrossRefGoogle Scholar
  21. Kolmogorov, A.N. (1965). Three approaches to the quantitative definition of information. Problems of Information and Transmission, 1(1), 1–7.Google Scholar
  22. Kudlek, M., & Rogozhin, Y. (2002). A universal Turing machine with 3 states and 9 symbols. In W. Kuich, G. Rozenberg, A. Salomaa (Eds.), Developments in language theory (DLT) 2001. LNCS (Vol. 2295, pp. 311–318).Google Scholar
  23. Lloyd, S. (2002). Computational capacity of the universe. Physical Review Letters, 237901, 88.Google Scholar
  24. Lloyd, S. (2006). Programming the universe: a quantum computer scientist takes on the cosmos. New York: Knopf.Google Scholar
  25. Margenstern, M. (2010). Turing machines with two letters and two states. Complex Systems, 19(1).Google Scholar
  26. Margolus, N. (1984). Physics-like models of computation. Physica, 10D, 81–95.Google Scholar
  27. Martinez, G.J., Seck-Touh-Mora, J.C., Zenil, H. (2012). Computation and universality: class IV versus class III cellular automata. Journal of Cellular Automata (in press).Google Scholar
  28. Minsky, M.A. (1960). 6-symbol 7-state universal, Turing machines. Technical Report 54-G-027, MIT.Google Scholar
  29. Neary, T., & Woods, D. (2009). Four small universal Turing machines. Fundamenta Informaticae, 91(1), 123–144.Google Scholar
  30. Perlis, A.J. (1982). Epigrams on programming. SIGPLAN Notices, 17(9), 7–13.CrossRefGoogle Scholar
  31. Piccinini, G. (2007). Computing mechanisms. Philosophy of Science, 74, 501–526.CrossRefGoogle Scholar
  32. Piccinini, G. (2008). Computation without representation. Philosophical Studies, 137, 2.CrossRefGoogle Scholar
  33. Putnam, H. (1988). Representation and reality. Cambridge: MIT Press.Google Scholar
  34. Rogozhin, Y. (1996). Small universal Turing machines. Theoretical Computer Science, 168(2), 215–240.CrossRefGoogle Scholar
  35. Scheutz, M. (1999). When physical systems realize functions. Minds and Machines, 9, 161–196.CrossRefGoogle Scholar
  36. Scott, D.S. (1970). Outline of a mathematical theory of computation. England: Technical Monograph PRG-2, Oxford University Computing Laboratory.Google Scholar
  37. Searle, J.R. (1980). Minds brains, and programs. Behavioral and Brain Sciences, 3, 417–457.CrossRefGoogle Scholar
  38. Shagrir, O. (2006). Why we view the brain as a computer. Synthese, 153, 393–416.CrossRefGoogle Scholar
  39. Sieg, W. (2012). Step by recursive step: Church’s analysis of effective calculability (with a postscript). In H. Zenil (Ed.), A computable universe, understanding computation & exploring nature as computation. Singapore: World Scientific.Google Scholar
  40. Smith, A. (2012). The Wolfram 2,3 Turing machine research prize. Accessed 10 April 2012.
  41. Smith, B.C. (1996). On the origins of objects. Cambridge: MIT Press.Google Scholar
  42. Smith, B.C. (2002). The foundations of computing. Accessed 18 August 2012.
  43. Smith, B.C. (2010). Age of significance. Accessed 18 August 2012.
  44. Sutner, K. (2011). Computational, processes, observers and turing incompleteness. Theoretical Computer Science, 412, 183–190.CrossRefGoogle Scholar
  45. Turner, R. (2011). Specification. Minds and Machines, 21(2), 135–152.CrossRefGoogle Scholar
  46. Watanabe, S. (1972). 4-Symbol 5-state universal Turing machine. Information Processing Society of Japan Magazine, 13(9), 588–592.Google Scholar
  47. Wheeler, J.A. (1990). Information, physics, quantum: the search for links. In W. Zurek (Ed.), Complexity entropy, and the physics of information. Reading: Addison-Wesley.Google Scholar
  48. Wolfram, S. (1984). Cellular automata as models of complexity. Nature, 311, 419–424.CrossRefGoogle Scholar
  49. Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media.Google Scholar
  50. Zenil, H. (2010). Compression-based investigation of the behaviour of cellular automata and other systems. Complex Systems, 19(2).Google Scholar
  51. Zenil, H. (2012a). On the dynamic qualitative behaviour of universal computation. Complex Systems, 20(3), 265–278.Google Scholar
  52. Zenil, H. (2012b). A Turing test-inspired approach to computation, Turing in context II. Brussels (forthcoming).Google Scholar
  53. Zenil, H. (2012c). Nature-like computation and programmability. In G. Dodig-Crnkovic, & R. Giovagnoli (Eds.), A behavioural foundation for natural computing and a programmability test. Heidelberg: Springer (in press).Google Scholar
  54. Zenil, H. (2012d). Programmability for natural computation and the game of life as a case study. Journal of Experimental and Theoretical Artificial Intelligence (in press).Google Scholar
  55. Zenil, H., Soler-Toscano, F., Joosten, J.J. (2012). Empirical encounters with computational irreducibility and unpredictability. Minds and Machines, 21(3), 149–165.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institut d’Histoire et de Philosophie des Sciences et des Techniques (Paris 1/ENS Ulm/CNRS)ParisFrance
  2. 2.Department of Computer ScienceThe University of SheffieldSheffieldUK

Personalised recommendations