Delivery of transcription factors as modulators of cell differentiation

Abstract

Fundamental studies performed during the last decades have shown that cell fate is much more plastic than previously considered, and technologies for its manipulation are a keystone for many new tissue regeneration therapies. Transcription factors (TFs) are DNA-binding proteins that control gene expression, and they have critical roles in the control of cell fate and other cellular behavior. TF-based therapies have much medical potential, but their use as drugs depends on the development of suitable delivery technologies that can help them reach their action site inside of the cells. TFs can be used either as proteins or encoded in polynucleotides. When used in protein form, many TFs require to be associated to a cell-penetrating peptide or another transduction domain. As polynucleotides, they can be delivered either by viral carriers or by non-viral systems such as polyplexes and lipoplexes. TF-based therapies have extensively shown their potential to solve many tissue-engineering problems, including bone, cartilage and cardiac regeneration. Yet, their use has expanded beyond regenerative medicine to other prominent disease areas such as cancer therapy and immunomodulation. This review summarizes some of the delivery options for effective TF-based therapies and their current main applications.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Availability of data and materials

All data reviewed for this publication are published or pre-approved for publication in scientific information sources.

References

  1. 1.

    Weismann A. The germ-plasm. New York: AMS Press inc; 1893.

    Google Scholar 

  2. 2.

    Sánchez Alvarado A, Yamanaka S. Rethinking differentiation: stem cells, regeneration, and plasticity. Cell. 2014;157(1):110–9. https://doi.org/10.1016/j.cell.2014.02.041.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Varga J, Greten FR. Cell plasticity in epithelial homeostasis and tumorigenesis. Nat Cell Biol. 2017;19(10):1133–41. https://doi.org/10.1038/ncb3611.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Spitz F, Furlong EEM. Transcription factors: from enhancer binding to developmental control. Nat Rev Genet. 2012;13(9):613–26. https://doi.org/10.1038/nrg3207.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Ulasov AV, Rosenkranz AA, Sobolev AS. Transcription factors: Time to deliver. Journal of Controlled Release. 2018;269(September 2017): 24–35.https://doi.org/10.1016/j.jconrel.2017.11.004.

  6. 6.

    Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987;51(6):987–1000. https://doi.org/10.1016/0092-8674(87)90585-X.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Raftery RM, Gonzalez Vazquez AG, Chen G, O’Brien FJ. Activation of the SOX-5, SOX-6, and SOX-9 trio of transcription factors using a gene-activated scaffold stimulates mesenchymal stromal cell chondrogenesis and inhibits endochondral ossification. Advanced Healthcare Materials. 2020;1901827:1–12. https://doi.org/10.1002/adhm.201901827.

    CAS  Article  Google Scholar 

  8. 8.

    Umebayashi M, Sumita Y, Kawai Y, Watanabe S, Asahina I. Gene-activated matrix comprised of atelocollagen and plasmid DNA encoding BMP4 or Runx2 promotes rat cranial bone augmentation. BioResearch Open Access. 2015;4(1):164–74. https://doi.org/10.1089/biores.2014.0057.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. https://doi.org/10.1016/j.cell.2006.07.024.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Bushweller JH. Targeting transcription factors in cancer — from undruggable to reality. Nat Rev Cancer. 2019;19(11):611–24. https://doi.org/10.1038/s41568-019-0196-7.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Brune Z, Rice MR, Barnes BJ. Potential T cell-intrinsic regulatory roles for IRF5 via cytokine modulation in T helper subset differentiation and function. Frontiers in Immunology. 2020;11(June):1–12. https://doi.org/10.3389/fimmu.2020.01143.

    CAS  Article  Google Scholar 

  12. 12.

    Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152(6):1237–51. https://doi.org/10.1016/j.cell.2013.02.014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Dewan AK, Gibson MA, Elisseeff JH, Trice ME. Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques. BioMed ResearchInternational. 2014;2014(Table 1). https://doi.org/10.1155/2014/272481.

  14. 14.

    Mao AS, Mooney DJ. Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci USA. 2015;112(47):14452–9. https://doi.org/10.1073/pnas.1508520112.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Hagenbuchner J, Ausserlechner MJ. Targeting transcription factors by small compounds - current strategies and future implications. Biochem Pharmacol. 2016;107:1–13. https://doi.org/10.1016/j.bcp.2015.12.006.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Koehler AN. A complex task? Direct modulation of transcription factors with small molecules. Curr Opin Chem Biol. 2010;14(3):331–40. https://doi.org/10.1016/j.cbpa.2010.03.022.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discovery. 2014;13(9):655–72. https://doi.org/10.1038/nrd4363.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Frokjaer S, Otzen DE. Protein drug stability: a formulation challenge. Nat Rev Drug Discovery. 2005;4(4):298–306. https://doi.org/10.1038/nrd1695.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Fu A, Tang R, Hardie J, Farkas ME, Rotello VM. Promises and pitfalls of intracellular delivery of proteins. Bioconjug Chem. 2014;25(9):1602–8. https://doi.org/10.1021/bc500320j.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Chau C, Actis P, Hewitt E. Methods for protein delivery into cells: from current approaches to future perspectives. Biochem Soc Trans. 2020;48(2):357–65. https://doi.org/10.1042/BST20190039.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Venslauskas MS, Šatkauskas S. Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation. Eur Biophys J. 2015;44(5):277–89. https://doi.org/10.1007/s00249-015-1025-x.

    Article  PubMed  Google Scholar 

  22. 22.

    Herrera Estrada LP, Champion JA. Protein nanoparticles for therapeutic protein delivery. Biomater Sci. 2015;3(6):787–99. https://doi.org/10.1039/c5bm00052a.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Scaletti F, Hardie J, Lee YW, Luther DC, Ray M, Rotello VM. Protein delivery into cells using inorganic nanoparticle-protein supramolecular assemblies. Chem Soc Rev. 2018;47(10):3421–32. https://doi.org/10.1039/c8cs00008e.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Wang M, Yu J, Cai L, Yang X. Direct reprogramming of mouse fibroblasts into hepatocyte-like cells by polyethyleneimine-modified nanoparticles through epigenetic activation of hepatic transcription factors. Materials Today Chemistry. 2020;17. https://doi.org/10.1016/j.mtchem.2020.100281.

  25. 25.

    Patel S, Jung D, Yin PT, Carlton P, Yamamoto M, Bando T, Sugiyama H, Lee KB. NanoScript: a nanoparticle-based artificial transcription factor for effective gene regulation. ACS Nano. 2014;8(9):8959–67. https://doi.org/10.1021/nn501589f.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Patel S, Yin PT, Sugiyama H, Lee KB. Inducing stem cell myogenesis using NanoScript. ACS Nano. 2015;9(7):6909–17. https://doi.org/10.1021/acsnano.5b00709.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 1988;55(6):1189–93. https://doi.org/10.1016/0092-8674(88)90263-2.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell. 1988;55(6):1179–88. https://doi.org/10.1016/0092-8674(88)90262-0.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J. Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA. 1994;91(2):664–8. https://doi.org/10.1073/pnas.91.2.664.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Wadia JS, Stan RV, Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med. 2004;10(3):310–5. https://doi.org/10.1038/nm996.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Brock R. The uptake of arginine-rich cell-penetrating peptides: putting the puzzle together. Bioconjug Chem. 2014;25(5):863–8. https://doi.org/10.1021/bc500017t.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Zhao X, Dong Y, Zhao Z, Guo J, Liu J, Huang P, Dong D, Fan H, Guo Q, Yang X, Xu J, Li J, Fu L, Chen W. Intracellular delivery of artificial transcription factors fused to the protein transduction domain of HIV-1 Tat. Protein Expr Purif. 2013;90(1):27–33. https://doi.org/10.1016/j.pep.2013.04.007.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Bailus BJ, Pyles B, Mcalister MM, O’Geen H, Lockwood SH, Adams AN, Nguyen JTT, Yu A, Berman RF, Segal DJ. Protein delivery of an artificial transcription factor restores widespread Ube3a expression in an angelman syndrome mouse brain. Mol Ther. 2016;24(3):548–55. https://doi.org/10.1038/mt.2015.236.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Yun CO, Shin HC, Kim TD, Yoon WH, Kang YA, Kwon HS, Kim SK, Kim JS. Transduction of artificial transcriptional regulatory proteins into human cells. Nucleic Acids Res. 2008;36(16):1–7. https://doi.org/10.1093/nar/gkn398.

    CAS  Article  Google Scholar 

  35. 35.

    Kircheis R, Wightman L, Wagner E. Design and gene delivery activity of modified.pdf. Adv Drug Deliv Rev. 2001;53:341–58.

    CAS  Article  Google Scholar 

  36. 36.

    Munier S, Messai I, Delair T, Verrier B, Ataman-Önal Y. Cationic PLA nanoparticles for DNA delivery: comparison of three surface polycations for DNA binding, protection and transfection properties. Colloids Surf, B. 2005;43(3–4):163–73. https://doi.org/10.1016/j.colsurfb.2005.05.001.

    CAS  Article  Google Scholar 

  37. 37.

    Bergen JM, Park IK, Horner PJ, Pun SH. Nonviral approaches for neuronal delivery of nucleic acids. Pharm Res. 2008;25(5):983–98. https://doi.org/10.1007/s11095-007-9439-5.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541–55. https://doi.org/10.1038/nrg3763.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Nam HY, Park JH, Kim K, Kwon IC, Jeong SY. Lipid-based emulsion system as non-viral gene carriers. Arch Pharmacal Res. 2009;32(5):639–46. https://doi.org/10.1007/s12272-009-1500-y.

    CAS  Article  Google Scholar 

  40. 40.

    Tavernier G, Andries O, Demeester J, Sanders NN, De Smedt SC, Rejman J. MRNA as gene therapeutic: how to control protein expression. J Control Release. 2011;150(3):238–47. https://doi.org/10.1016/j.jconrel.2010.10.020.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Nagasaki T, Shinkai S. The concept of molecular machinery is useful for design of stimuli-responsive gene delivery systems in the mammalian cell. J Incl Phenom Macrocycl Chem. 2007;58(3–4):205–19. https://doi.org/10.1007/s10847-007-9303-6.

    CAS  Article  Google Scholar 

  42. 42.

    Gardlík R, Pálffy R, Hodosy J, Lukács J, Turňa J, Celec P. Vectors and delivery systems in gene therapy. Med Sci Monit. 2005;11(4):110–21.

    Google Scholar 

  43. 43.

    Kootstra NA, Verma IM. G ene t herapy with v iral v ectors. Annu Rev Pharmacol Toxicol. 2003;43(1):413–39. https://doi.org/10.1146/annurev.pharmtox.43.100901.140257.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Chirmule N, Propert KJ, Magosin SA, Qian Y, Qian R, Wilson JM. Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther. 1999;6(9):1574–83. https://doi.org/10.1038/sj.gt.3300994.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Brockstedt DG, Podsakoff GM, Fong L, Kurtzman G, Mueller-Ruchholtz W, Engleman EG. Induction of immunity to antigens expressed by recombinant adeno- associated virus depends on the route of administration. Clin Immunol. 1999;92(1):67–75. https://doi.org/10.1006/clim.1999.4724.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Suckau L, Fechner H, Chemaly E, Krohn S, Hadri L, Kockskamper J, Westermann D, Bisping E, Ly H, Wang X, Kawase Y, Chen J, Liang L, Sipo I, Vetter R, Weger S, Kurreck J, Erdmann V, Tschope C, Poller WC. Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. Circulation. 2009;119(9):1241–52. https://doi.org/10.1161/CIRCULATIONAHA.108.783852.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Madry H, Gao L, Rey-Rico A, Venkatesan JK, Müller-Brandt K, Cai X, Goebel L, Schmitt G, Speicher-Mentges S, Zurakowski D, Menger MD, Laschke MW, Cucchiarini M. Thermosensitive hydrogel based on PEO–PPO–PEO poloxamers for a controlled in situ release of recombinant adeno-associated viral vectors for effective gene therapy of cartilage defects. Adv Mater. 2020;32(2):1–8. https://doi.org/10.1002/adma.201906508.

    CAS  Article  Google Scholar 

  48. 48.

    Rey-Rico A, Venkatesan JK, Schmitt G, Speicher-Mentges S, Madry H, Cucchiarini M. Effective remodelling of human osteoarthritic cartilage by sox9 gene transfer and overexpression upon delivery of rAAV vectors in polymeric micelles. Mol Pharm. 2018;15(7):2816–26. https://doi.org/10.1021/acs.molpharmaceut.8b00331.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Kootstra NA, Zwart BM, Schuitemaker H. Diminished human immunodeficiency virus type 1 reverse transcription and nuclear transport in primary macrophages arrested in Early G1 phase of the cell cycle. J Virol. 2000;74(4):1712–7. https://doi.org/10.1128/jvi.74.4.1712-1717.2000.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142(3):375–86. https://doi.org/10.1016/j.cell.2010.07.002.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, Hill JA, Bassel-Duby R, Olson EN. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485(7400):599–604. https://doi.org/10.1038/nature11139.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Bukrinsky MI, Haggerty S, Dempsey MP, Sharova N, Adzhubei A, Spitz L, Lewis P, Goldfarb D, Emerman M, Stevenson M. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature. 1993;365(6447):666–9. https://doi.org/10.1038/365666a0.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G, Russo G, Carninci P, Pezzoli G, Gainetdinov RR, Gustincich S, Dityatev A, Broccoli V. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature. 2011;476(7359):224–7. https://doi.org/10.1038/nature10284.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Ivnbo C, Dfmmt J, Rhee Y, Ko J, Chang M, Yi S, Kim D, Kim C, Shim J, Jo A, Kim B, Lee H, Lee S, Suh W, Park C, Koh H, Lee Y, Lanza R, Kim K, Lee S. Ivnbo, Cbtfe Dfmmt, J Rhee, Yong-hee Ko, Ji-yun Chang, Mi-yoon Yi, Sang-hoon Kim, Dohoon Kim, Chun-hyung Shim, Jae-won Jo, A-young Kim, Byung-woo Lee, Hyunsu Lee, Suk-ho Suh, Wonhee Park, Chang-hwan Koh, Hyun-chul Lee, Yong-sung Lanza, Robert Kim. J Clin Invest. 2011;121(6):2326–35. https://doi.org/10.1172/JCI45794DS1.

    Article  Google Scholar 

  55. 55.

    Kotterman MA, Chalberg TW, Schaffer DV. Viral vectors for gene therapy: translational and clinical outlook. Annu Rev Biomed Eng. 2015;17:63–89. https://doi.org/10.1146/annurev-bioeng-071813-104938.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Douglas JT. Adenoviral vectors for gene therapy. Mol Biotechnol. 2007;36(1):71–80. https://doi.org/10.1007/s12033-007-0021-5.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Kafri T, Morgan D, Krahl T, Sarvetnick N, Sherman L, Verma I. Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy. Proc Natl Acad Sci USA. 1998;95(19):11377–82. https://doi.org/10.1073/pnas.95.19.11377.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Zhang WW. Adenoviral vectors: development and application. Expert Opin Investig Drugs. 1997;6(10):1419–57. https://doi.org/10.1517/13543784.6.10.1419.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Zhang WW, Li L, Li D, Liu J, Li X, Li W, Xu X, Zhang MJ, Chandler LA, Lin H, Hu A, Xu W, Lam DMK. The first approved gene therapy product for cancer Ad-p53 (Gendicine): 12 years in the clinic. Hum Gene Ther. 2018;29(2):160–79. https://doi.org/10.1089/hum.2017.218.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Kojima H, Fujimiya M, Matsumura K, Younan P, Imaeda H, Maeda M, Chan L. NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat Med. 2003;9(5):596–603. https://doi.org/10.1038/nm867.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Al-Dosari MS, Gao X. Nonviral gene delivery: principle, limitations, and recent progress. AAPS Journal. 2009;11(4):671–81. https://doi.org/10.1208/s12248-009-9143-y.

    CAS  Article  Google Scholar 

  62. 62.

    Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1982;1(7):841–5. https://doi.org/10.1002/j.1460-2075.1982.tb01257.x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Mehier-Humbert S, Guy RH. Physical methods for gene transfer: improving the kinetics of gene delivery into cells. Adv Drug Deliv Rev. 2005;57(5):733–53. https://doi.org/10.1016/j.addr.2004.12.007.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Gao X, Kim K, Liu D. Critical review article. Camb J Educ. 1994;24(1):135–7. https://doi.org/10.1080/0305764940240113.

    Article  Google Scholar 

  65. 65.

    Heller LC, Ugen K, Heller R. Electroporation for targeted gene transfer. Expert Opin Drug Deliv. 2005;2(2):255–68. https://doi.org/10.1517/17425247.2.2.255.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Liu L, Marti GP, Wei X, Zhang X, Zhang H, Liu YV, Nastai M, Semenza GL, Harmon JW. Age-dependent impairment of HIF-1α expression in diabetic mice: correction with electroporation-facilitated gene therapy increases wound healing, angiogenesis, and circulating angiogenic cells. J Cell Physiol. 2008;217(2):319–27. https://doi.org/10.1002/jcp.2150.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Dewitte H, Van Lint S, Heirman C, Thielemans K, De Smedt SC, Breckpot K, Lentacker I. The potential of antigen and TriMix sonoporation using mRNA-loaded microbubbles for ultrasound-triggered cancer immunotherapy. J Control Release. 2014;194(1):28–36. https://doi.org/10.1016/j.jconrel.2014.08.011.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Mattozzi MD, Voges MJ, Silver PA, Way JC. Transient gene expression in tobacco using Gibson assembly and the gene gun. J Vis Exp. 2014;86:1–8. https://doi.org/10.3791/51234.

    CAS  Article  Google Scholar 

  69. 69.

    Van Meirvenne S, Straetman L, Heirman C, Dullaers M, De Greef C, Van Tendeloo V, Thielemans K. Efficient genetic modification of murine dendritic cells by electroporation with mRNA. Cancer Gene Ther. 2002;9(9):787–97. https://doi.org/10.1038/sj.cgt.7700499.

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M. Lipofection : a highly efficient , lipid-mediated DNA-transfection procedure. 1987;84(November):7413–7417.

  71. 71.

    Mockey M, Gonçalves C, Dupuy FP, Lemoine FM, Pichon C, Midoux P. mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA capping with poly(A) chains in cis and in trans for a high protein expression level. Biochem Biophys Res Commun. 2006;24;340(4):1062–8. https://doi.org/10.1016/j.bbrc.2005.12.105.

  72. 72.

    Dwarki VJ, Malone RW, Verma IM. Cationic liposome-mediated RNA transfection. Methods Enzymol1993;217(C):644–654. https://doi.org/10.1016/0076-6879(93)17093-K.

  73. 73.

    Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release. 2006;114(1):100–9. https://doi.org/10.1016/j.jconrel.2006.04.014.

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Hoy SM. Patisiran: First Global Approval. Drugs. 2018;78(15):1625–31. https://doi.org/10.1007/s40265-018-0983-6.

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat Nanotechnol. 2020;15(4):313–20. https://doi.org/10.1038/s41565-020-0669-6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Tsuchiya H, Kitoh H, Sugiura F, Ishiguro N. Chondrogenesis enhanced by overexpression of sox9 gene in mouse bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun. 2003;301(2):338–43. https://doi.org/10.1016/S0006-291X(02)03026-7.

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Zhang G, Nie M, Webster TJ, Zhang Q, Fan W. Ectopic chondrogenesis of nude mouse induced by nano gene delivery enhanced tissue engineering technology. Int J Nanomed. 2019;14:4755–65. https://doi.org/10.2147/IJN.S199306.

    CAS  Article  Google Scholar 

  78. 78.

    Monteiro N, Ribeiro D, Martins A, Faria S, Fonseca NA, Moreira JN, Reis RL, Neves NM. Instructive nanofibrous scaffold comprising runt-related transcription factor 2 gene delivery for bone tissue engineering. ACS Nano. 2014;8(8):8082–94. https://doi.org/10.1021/nn5021049.

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Ibraheem D, Elaissari A, Fessi H. Gene therapy and DNA delivery systems. Int J Pharm. 2014;459(1–2):70–83. https://doi.org/10.1016/j.ijpharm.2013.11.041.

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Wu GY, Wu CH. Receptor-mediated gene delivery and expression in vivo. J Biol Chem. 1988;263(29):14621–4.

    CAS  Article  Google Scholar 

  81. 81.

    Chemin I, Moradpour D, Wieland S, Offensperger WB, Walter E, Behr JP, Blum HE. Liver-directed gene transfer: a linear polyethylenimine derivative mediates highly efficient DNA delivery to primary hepatocytes in vitro and in vivo. J Viral Hepatitis. 1998;5(6):369–75. https://doi.org/10.1046/j.1365-2893.1998.00126.x.

    CAS  Article  Google Scholar 

  82. 82.

    Schaffert D, Wagner E. Gene therapy progress and prospects: synthetic polymer-based systems. Gene Ther. 2008;15(16):1131–8. https://doi.org/10.1038/gt.2008.105.

    CAS  Article  PubMed  Google Scholar 

  83. 83.

    Bolte C, Ustiyan V, Ren X, Dunn AW, Pradhan A, Wang G, Kolesnichenko OA, Deng Z, Zhang Y, Shi D, Greenberg JM, Jobe AH, Kalin TV, Kalinichenko VV. Nanoparticle delivery of proangiogenic transcription factors into the neonatal circulation inhibits alveolar simplification caused by hyperoxia Am J Respir Crit Care Med. 2020;1–61. https://doi.org/10.1164/rccm.201906-1232oc.

  84. 84.

    Zepp JA,  Alvira CM. Nanoparticle delivery of angiogenic gene therapy : save the vessels, save the lung ! 2020;1–8. https://doi.org/10.1164/rccm.202004-0933ED.

  85. 85.

    Pradhan A, Dunn A, Ustiyan V, Bolte C, Wang G, Whitsett JA, Zhang Y, Porollo A, Hu YC, Xiao R, Szafranski P, Shi D, Stankiewicz P, Kalin TV, Kalinichenko VV. The S52F FOXF1 mutation inhibits STAT3 signaling and causes alveolar capillary dysplasia. In Am J Respir Crit Care Med. 2019;200(8). https://doi.org/10.1164/rccm.201810-1897OC.

  86. 86.

    Kim JH, Park JS, Yang HN, Woo DG, Jeon SY, Do HJ, Lim HY, Kim JM, Park KH. The use of biodegradable PLGA nanoparticles to mediate SOX9 gene delivery in human mesenchymal stem cells (hMSCs) and induce chondrogenesis. Biomaterials. 2011;32(1):268–78. https://doi.org/10.1016/j.biomaterials.2010.08.086.

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Park JS, Yang HN, Woo DG, Jeon SY, Do HJ, Lim HY, Kim JH, Park KH. Chondrogenesis of human mesenchymal stem cells mediated by the combination of SOX trio SOX5, 6, and 9 genes complexed with PEI-modified PLGA nanoparticles. Biomaterials. 2011;32(14):3679–88. https://doi.org/10.1016/j.biomaterials.2011.01.063.

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Aini H, Itaka K, Fujisawa A, Uchida H, Uchida S, Fukushima S, Kataoka K, Saito T, Chung U, Il Ohba S. Messenger RNA delivery of a cartilage-anabolic transcription factor as a disease-modifying strategy for osteoarthritis treatment. Sci Rep. 2016;6(September 2015), 1–12. https://doi.org/10.1038/srep18743.

  89. 89.

    De Laporte L, Shea LD. Matrices and scaffolds for DNA delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59(4–5):292–307. https://doi.org/10.1016/j.addr.2007.03.017.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Peng B, Chen Y, Leong KW. MicroRNA delivery for regenerative medicine. Adv Drug Deliv Rev. 2015;88:108–22. https://doi.org/10.1016/j.addr.2015.05.014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Fang J, Zhu YY, Smiley E, Bonadio J, Rouleau JP, Goldstein SA, Mccauley LK, Davidson BL, Roessler BJ. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc Natl Acad Sci USA. 1996;93(12):5753–8. https://doi.org/10.1073/pnas.93.12.5753.

    CAS  Article  PubMed  Google Scholar 

  92. 92.

    Jang JH, Houchin TL, Shea LD. Gene delivery from polymer scaffolds for tissue engineering. Expert Rev Med Devices. 2004;1(1):127–38. https://doi.org/10.1586/17434440.1.1.127.

    CAS  Article  PubMed  Google Scholar 

  93. 93.

    Raftery RM, Mencía Castaño I, Chen G, Cavanagh B, Quinn B, Curtin CM, Cryan SA, O’Brien FJ. Translating the role of osteogenic-angiogenic coupling in bone formation: highly efficient chitosan-pDNA activated scaffolds can accelerate bone regeneration in critical-sized bone defects. Biomaterials. 2017;149:116–27. https://doi.org/10.1016/j.biomaterials.2017.09.036.

    CAS  Article  PubMed  Google Scholar 

  94. 94.

    Im GI, Kim HJ, Lee JH. Chondrogenesis of adipose stem cells in a porous PLGA scaffold impregnated with plasmid DNA containing SOX trio (SOX-5,-6 and -9) genes. Biomaterials. 2011;32(19):4385–92. https://doi.org/10.1016/j.biomaterials.2011.02.054.

    CAS  Article  PubMed  Google Scholar 

  95. 95.

    Ledo AM, Senra A, Rilo-Alvarez H, Borrajo E, Vidal A, Alonso MJ, Garcia-Fuentes M. mRNA-activated matrices encoding transcription factors as primers of cell differentiation in tissue engineering. Biomaterials. 2020;247(July 2019):120016. https://doi.org/10.1016/j.biomaterials.2020.120016.

  96. 96.

    Ledo AM, Vining KH, Alonso MJ, Garcia-Fuentes M, Mooney DJ. Extracellular matrix mechanics regulate transfection and SOX9-directed differentiation of mesenchymal stem cells. Acta Biomater. 2020;110:153–63. https://doi.org/10.1016/j.actbio.2020.04.027.

    CAS  Article  PubMed  Google Scholar 

  97. 97.

    Jopling C, Boue S, Belmonte J. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol. 2011;12:79–89. https://doi.org/10.1038/nrm3043.

    CAS  Article  PubMed  Google Scholar 

  98. 98.

    Singh YP, Bandyopadhyay A, Mandal BB. 3D bioprinting using cross-linker-free silk-gelatin bioink for cartilage tissue engineering. ACS Appl Mater Interfaces. 2019;11(37):33684–96. https://doi.org/10.1021/acsami.9b11644.

    CAS  Article  PubMed  Google Scholar 

  99. 99.

    Zhang S, Xing M, Li B. Recent advances in musculoskeletal local drug delivery. Acta Biomater. 2019;93:135–51. https://doi.org/10.1016/j.actbio.2019.01.043.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Zhang Y, Liu X, Zeng L, Zhang J, Zuo J, Zou J, Ding J, Chen X. Polymer fiber scaffolds for bone and cartilage tissue engineering. Adv Func Mater. 2019;29(36):1–20. https://doi.org/10.1002/adfm.201903279.

    CAS  Article  Google Scholar 

  101. 101.

    Ghafarzadeh M, Namdari P, Tarhani M, Tarhani F. A review of application of stem cell therapy in the management of congenital heart disease. J Matern Fetal Neonatal Med. 2020;33(9):1607–15. https://doi.org/10.1080/14767058.2018.1520829.

    CAS  Article  PubMed  Google Scholar 

  102. 102.

    Boni R, Ali A, Shavandi A, Clarkson AN. Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci. 2018;25(1):1–21. https://doi.org/10.1186/s12929-018-0491-8.

    CAS  Article  Google Scholar 

  103. 103.

    Park KM, Shin YM, Kim K, Shin H. Tissue engineering and regenerative medicine 2017: a year in review. Tissue Engineering - Part B: Reviews. 2018;24(5):327–44. https://doi.org/10.1089/ten.teb.2018.0027.

    Article  Google Scholar 

  104. 104.

    Vega SL, Kwon MY, Burdick JA. Recent advances in hydrogels for cartilage tissue engineering. Eur Cell Mater. 2017;33:59–75. https://doi.org/10.22203/eCM.v033a05.

  105. 105.

    Zhao Z, Fan C, Chen F, Sun Y, Xia Y, Ji A, Wang D-A. Progress in articular cartilage tissue engineering: a review on therapeutic cells and macromolecular scaffolds. Macromol Biosci. 2020;20:1900278. https://doi.org/10.1002/mabi.201900278.

    CAS  Article  Google Scholar 

  106. 106.

    Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002;16(21):2813–28. https://doi.org/10.1101/gad.1017802.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, Pasantes J, Bricarelli FD, Keutel J, Hustert E, Wolf U, Tommerup N, Schempp W, Scherer G. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994;79(6):1111–20. https://doi.org/10.1016/0092-8674(94)90041-8.

    CAS  Article  PubMed  Google Scholar 

  108. 108.

    Weissenberger M, Weissenberger MH, Gilbert F, et al. Reduced hypertrophy in vitro after chondrogenic differentiation of adult human mesenchymal stem cells following adenoviral SOX9 gene delivery. BMC Musculoskelet Disord. 2020;21:109. https://doi.org/10.1186/s12891-020-3137-4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Kulyk WM, Franklin JL, Hoffman LM. Sox9 expression during chondrogenesis in micromass cultures of embryonic limb mesenchyme. Exp Cell Res. 2000;255(2):327–32. https://doi.org/10.1006/excr.1999.4784.

    CAS  Article  PubMed  Google Scholar 

  110. 110.

    Babister JC, Tare RS, Green DW, Inglis S, Mann S, Oreffo ROC. Genetic manipulation of human mesenchymal progenitors to promote chondrogenesis using “bead-in-bead” polysaccharide capsules. Biomaterials. 2008;29(1):58–65. https://doi.org/10.1016/j.biomaterials.2007.09.006.

    CAS  Article  PubMed  Google Scholar 

  111. 111.

    Ikeda T, Kamekura S, Mabuchi A, Kou I, Seki S, Takato T, Nakamura K, Kawaguchi H, Ikegawa S, Chung UI. The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage. Arthritis Rheum. 2004;50(11):3561–73. https://doi.org/10.1002/art.20611.

    CAS  Article  PubMed  Google Scholar 

  112. 112.

    Needham CJ, Shah SR, Dahlin RL, Kinard LA, Lam J, Watson BM, Lu S, Kasper FK, Mikos AG. Osteochondral tissue regeneration through polymeric delivery of DNA encoding for the SOX trio and RUNX2. Acta Biomater. 2014;10(10):4103–12. https://doi.org/10.1016/j.actbio.2014.05.011.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Cao L, Yang F, Liu G, Yu D, Li H, Fan Q, Gan Y, Tang T, Dai K. The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells. Biomaterials. 2011;32(16):3910–20. https://doi.org/10.1016/j.biomaterials.2011.02.014.

    CAS  Article  PubMed  Google Scholar 

  114. 114.

    Kimura A, Inose H, Yano F, Fujita K, Ikeda T, Sato S, Iwasaki M, Jinno T, Ae K, Fukumoto S, Takeuchi Y, Itoh H, Imamura T, Kawaguchi H, Chung UI, Martin JF, Iseki S, Shinomiya K, Takeda S. Runx1 and Runx2 cooperate during sternal morphogenesis. Development (Cambridge, England). 2010;137(7):1159–67. https://doi.org/10.1242/dev.045005.

    CAS  Article  Google Scholar 

  115. 115.

    LeBlanc KT, Walcott ME, Gaur T, O’Connell SL, Basil K, Tadiri CP, Mason-Savas A, Silva JA, van Wijnen AJ, Stein JL, Stein GS, Ayers DC, Lian JB, Fanning PJ. Runx1 activities in superficial zone chondrocytes, osteoarthritic chondrocyte clones and response to mechanical loading. J Cell Physiol. 2015;230(2):440–8. https://doi.org/10.1002/jcp.24727.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Frisch J, Rey-Rico A, Venkatesan JK, Schmitt G, Madry H, Cucchiarini M. rAAV-mediated overexpression of sox9, TGF-β and IGF-I in minipig bone marrow aspirates to enhance the chondrogenic processes for cartilage repair. Gene Ther. 2016;23(3):247–55. https://doi.org/10.1038/gt.2015.106.

    CAS  Article  PubMed  Google Scholar 

  117. 117.

    Cucchiarini M, Terwilliger EF, Kohn D, Madry H. Remodelling of human osteoarthritic cartilage by FGF-2, alone or combined with Sox9 via rAAV gene transfer. J Cell Mol Med. 2009;13(8B):2476–2488. https://doi.org/10.1111/j.1582-4934.2008.00474.x.

  118. 118.

    Liao J, Hu N, Zhou N, Lin L, Zhao C, Yi S, Fan T, Bao W, Liang X, Chen H, Xu W, Chen C, Cheng Q, Zeng Y, Si W, Yang Z, Huang W. Sox9 potentiates BMP2-induced chondrogenic differentiation and inhibits BMP2-induced osteogenic differentiation. PLoS One. 2014;9(2). https://doi.org/10.1371/journal.pone.0089025.

  119. 119.

    Zhao C, Jiang W, Zhou N, Liao J, Yang M, Hu N, Liang X, Xu W, Chen H, Liu W, Shi LL, Oliveira L, Wolf JM, Ho S, Athiviraham A, Tsai HM, He TC, Huang W. Sox9 augments BMP2-induced chondrogenic differentiation by downregulating Smad7 in mesenchymal stem cells (MSCs). Genes and Diseases. 2017;4(4):229–39. https://doi.org/10.1016/j.gendis.2017.10.004.

    CAS  Article  PubMed  Google Scholar 

  120. 120.

    Komori T. Regulation of bone development and maintenance by Runx2. Frontiers in bioscience: a journal and virtual library. 2008;13:898–903. https://doi.org/10.2741/2730.

    CAS  Article  Google Scholar 

  121. 121.

    Tu Q, Valverde P, Li S, Zhang J, Yang P, Chen J. Osterix overexpression in mesenchymal stem cells stimulates healing of critical-sized defects in murine calvarial bone. Tissue Eng. 2007;13(10):2431–40. https://doi.org/10.1089/ten.2006.0406.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT. Human skin wounds: a major and snowballing threat to public health and the economy. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2009;17(6), 763–771. https://doi.org/10.1111/j.1524-475X.2009.00543.x.

  123. 123.

    M Garcia-Fuentes. Gene therapy for the treatment of chronic wounds therapeutic dressings and wound healing applications. 2020;209–234. https://doi.org/10.1002/9781119433316.ch10.

  124. 124.

    Rebar EJ, Huang Y, Hickey R, Nath AK, Meoli D, Nath S, Chen B, Xu L, Liang Y, Jamieson AC, Zhang L, Spratt SK, Case CC, Wolffe A, Giordano FJ. Induction of angiogenesis in a mouse model using engineered transcription factors. Nat Med. 2002;8(12):1427–32. https://doi.org/10.1038/nm1202-795.

    CAS  Article  PubMed  Google Scholar 

  125. 125.

    Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol. 2001;21(12):3995–4004. https://doi.org/10.1128/MCB.21.12.3995-4004.2001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Fukuda R, Kelly B, Semenza GL. Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Can Res. 2003;63(9):2330–4.

    CAS  Google Scholar 

  127. 127.

    Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998;12(2):149–62. https://doi.org/10.1101/gad.12.2.149.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Hunt TK, Aslam RS, Beckert S, Wagner S, Ghani QP, Hussain MZ, Roy S, Sen CK. Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal. 2007;9(8):1115–24. https://doi.org/10.1089/ars.2007.1674.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Mace KA, Yu D, H, Paydar KZ, Boudreau N, Young DM. Sustained expression of Hif-1alpha in the diabetic environment promotes angiogenesis and cutaneous wound repair. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2007;15(5):636–645. https://doi.org/10.1111/j.1524-475X.2007.00278.x.

  130. 130.

    Thiersch M, Rimann M, Panagiotopoulou V, Öztürk E, Biedermann T, Textor M, Lühmann TC, Hall H. The angiogenic response to PLL-g-PEG-mediated HIF-1α plasmid DNA delivery in healthy and diabetic rats. Biomaterials. 2013;34(16):4173–82. https://doi.org/10.1016/j.biomaterials.2013.02.021.

    CAS  Article  PubMed  Google Scholar 

  131. 131.

    Tam RY, Fuehrmann T, Mitrousis N, Shoichet MS. Regenerative therapies for central nervous system diseases: a biomaterials approach. Neuropsychopharmacology. 2014;39(1):169–88. https://doi.org/10.1038/npp.2013.237.

    CAS  Article  PubMed  Google Scholar 

  132. 132.

    Laganiere J, Kells AP, Lai JT, Guschin D, Paschon DE, Meng X, Fong LK, Yu Q, Rebar EJ, Gregory PD, Bankiewicz KS, Forsayeth J, Zhang HS. An engineered zinc finger protein activator of the endogenous glial cell line-derived neurotrophic factor gene provides functional neuroprotection in a rat model of Parkinson’s disease. J Neurosci. 2010;30(49):16469–74. https://doi.org/10.1523/JNEUROSCI.2440-10.2010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Kliem MA, Heeke BL, Franz CK, Radovitskiy I, Raore B, Barrow E, Snyder BR, Federici T, Kaye Spratt S, Boulis NM. Intramuscular administration of a VEGF zinc finger transcription factor activator (VEGF-ZFP-TF) improves functional outcomes in SOD1 rats. Amyotroph Lateral Scler. 2011;12(5):331–9. https://doi.org/10.3109/17482968.2011.574142.

    CAS  Article  PubMed  Google Scholar 

  134. 134.

    Porter KE, Turner NA. Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther. 2009;123(2):255–78. https://doi.org/10.1016/j.pharmthera.2009.05.002.

    CAS  Article  PubMed  Google Scholar 

  135. 135.

    Steimle JD, Moskowitz IP. TBX5: a key regulator of heart development. Curr Top Dev Biol. 2017;122:195–221. https://doi.org/10.1016/bs.ctdb.2016.08.008.

    CAS  Article  PubMed  Google Scholar 

  136. 136.

    Dai YS, Cserjesi P, Markham BE, Molkentin JD. The transcription factors GATA4 and dHAND physically interact to synergistically activate cardiac gene expression through a p300-dependent mechanism. J Biol Chem. 2002;277(27):24390–8. https://doi.org/10.1074/jbc.M202490200.

    CAS  Article  PubMed  Google Scholar 

  137. 137.

    Molkentin JD, Black BL, Martin JF, Olson EN. Mutational analysis of the DNA binding, dimerization, and transcriptional activation domains of MEF2C. Mol Cell Biol. 1996;16(6):2627–36. https://doi.org/10.1128/mcb.16.6.2627.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485(7400):593–8. https://doi.org/10.1038/nature11044.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Herring MJ, Putney LF, Wyatt G, Finkbeiner WE, Hyde DM. Growth of alveoli during postnatal development in humans based on stereological estimation. Am J Physiol Lung Cell Mol Physiol. 2014;307(4):L338–L344. https://doi.org/10.1152/ajplung.00094.2014.

  140. 140.

    Thébaud B, Goss KN, Laughon M, Whitsett JA, Abman SH, Steinhorn RH, Aschner JL, Davis PG, McGrath-Morrow SA, Soll RF, Jobe AH. Bronchopulmonary dysplasia Nat Rev Dis Primers. 2019;5(1):78. https://doi.org/10.1038/s41572-019-0127-7.

    Article  PubMed  Google Scholar 

  141. 141.

    Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM. Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;164(10 Pt 1):1971–80. https://doi.org/10.1164/ajrccm.164.10.2101140.

    CAS  Article  PubMed  Google Scholar 

  142. 142.

    Dunn AW, Kalinichenko VV, Shi D. Highly efficient in vivo targeting of the pulmonary endothelium using novel modifications of polyethylenimine: an importance of charge. Advanced healthcare materials. 2018;7(23):e1800876. https://doi.org/10.1002/adhm.201800876.

    CAS  Article  PubMed  Google Scholar 

  143. 143.

    Pradhan A, Dunn A, Ustiyan V, Bolte C, Wang G, Whitsett JA, Zhang Y, Porollo A, Hu YC, Xiao R, Szafranski P, Shi D, Stankiewicz P, Kalin TV, Kalinichenko VV. The S52F FOXF1 mutation inhibits STAT3 signaling and causes alveolar capillary dysplasia. Am J Respir Crit Care Med. 2019;200(8):1045–56. https://doi.org/10.1164/rccm.201810-1897OC.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Efeyan A, Serrano M. p53: guardian of the genome and policeman of the oncogenes. Cell cycle. 2007;6(9):1006–1010. https://doi.org/10.4161/cc.6.9.4211.

  145. 145.

    Thomasova D, Mulay SR, Bruns H, Anders HJ. p53-independent roles of MDM2 in NF-κB signaling: Implications for cancer therapy, wound healing, and autoimmune diseases. Neoplasia (United States). 2012;14(12):1097–101. https://doi.org/10.1593/neo.121534.

    CAS  Article  Google Scholar 

  146. 146.

    Tan S, Guschin D, Davalos A, Lee YL, Snowden AW, Jouvenot Y, Zhang HS, Howes K, McNamara AR, Lai A, Ullman C, Reynolds L, Moore M, Isalan M, Berg LP, Campos B, Qi H, Spratt SK, Case CC, Pabo CO, Gregory PD. Zinc-finger protein-targeted gene regulation: genomewide single-gene specificity. Proc Natl Acad Sci USA. 2003;100(21):11997–2002. https://doi.org/10.1073/pnas.2035056100.

    CAS  Article  PubMed  Google Scholar 

  147. 147.

    Long SA, Buckner JH. CD4+FOXP3+ T regulatory cells in human autoimmunity: more than a numbers game. J Immunol. 2011;187(5): 2061–2066. https://doi.org/10.4049/jimmunol.1003224.

  148. 148.

    Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science (New York, N.Y.). 2003;299(5609):1057–1061. https://doi.org/10.1126/science.1079490.

  149. 149.

    Yomogida K, Wu S, Baravati B, Avendano C, Caldwell T, Maniaci B, Zhu Y, Chu CQ. Cell penetrating recombinant Foxp3 protein enhances Treg function and ameliorates arthritis. Biochem Biophys Res Commun. 2013;434(2):263–7. https://doi.org/10.1016/j.bbrc.2013.02.114.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  150. 150.

    Fransson M, Piras E, Burman J, Nilsson B, Essand M, Lu B, Harris RA, Magnusson PU, Brittebo E, Loskog AS. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. Journal of neuroinflammation. 2012;9:112. https://doi.org/10.1186/1742-2094-9-112.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Mays LE, Ammon-Treiber S, Mothes B, Alkhaled M, Rottenberger J, Müller-Hermelink ES, Grimm M, Mezger M, Beer-Hammer S, von Stebut E, Rieber N, Nürnberg B, Schwab M, Handgretinger R, Idzko M, Hartl D, Kormann MS. Modified Foxp3 mRNA protects against asthma through an IL-10-dependent mechanism. J Clin Investig. 2013;123(3):1216–28. https://doi.org/10.1172/JCI65351.

    CAS  Article  PubMed  Google Scholar 

  152. 152.

    Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89. https://doi.org/10.1016/j.cell.2006.06.044.

    CAS  Article  Google Scholar 

  153. 153.

    Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7(5):618–30. https://doi.org/10.1016/j.stem.2010.08.012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All the authors express their gratitude to the funding institutions declared in the funding section.

Funding

This work has been funded by Ministerio de Economía y Competitividad (MINECO-RETOS, Grant MAT2017-84361-R, Feder Funds), and Xunta de Galicia (Grupos de Referencia Competitiva, Feder Funds). HRA was a recipient of a predoctoral grant from Xunta de Galicia (ED481A-2020/078).

Author information

Affiliations

Authors

Contributions

All the authors participate in the design of the review. HRA and AML made the bibliographic research. HRA wrote the first draft. All the authors participate in the revision and correction of the manuscript.

Corresponding author

Correspondence to Marcos Garcia-Fuentes.

Ethics declarations

Ethics approval and consent to participate

All the authors consent to participate in this manuscript.

Consent to publication

HRA, AML, AV, and MGF consent the publication of the present manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rilo-Alvarez, H., Ledo, A.M., Vidal, A. et al. Delivery of transcription factors as modulators of cell differentiation. Drug Deliv. and Transl. Res. (2021). https://doi.org/10.1007/s13346-021-00931-8

Download citation

Keywords

  • Transcription factors
  • Reprogramming
  • Intracellular delivery
  • Gene delivery
  • Protein delivery