Asymmetric flow field-flow fractionation as a multifunctional technique for the characterization of polymeric nanocarriers

Abstract

The importance of polymeric nanocarriers in the field of drug delivery is ever-increasing, and the accurate characterization of their properties is paramount to understand and predict their behavior. Asymmetric flow field-flow fractionation (AF4) is a fractionation technique that has gained considerable attention for its gentle separation conditions, broad working range, and versatility. AF4 can be hyphenated to a plurality of concentration and size detectors, thus permitting the analysis of the multifunctionality of nanomaterials. Despite this potential, the practical information that can be retrieved by AF4 and its possible applications are still rather unfamiliar to the pharmaceutical scientist. This review was conceived as a primer that clearly states the “do’s and don’ts” about AF4 applied to the characterization of polymeric nanocarriers. Aside from size characterization, AF4 can be beneficial during formulation optimization, for drug loading and drug release determination and for the study of interactions among biomaterials. It will focus mainly on the advances made in the last 5 years, as well as indicating the problematics on the consensus, which have not been reached yet. Methodological recommendations for several case studies will be also included.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Martins JP, das Neves J, de la Fuente M, Celia C, Florindo H, Günday-Türeli N, et al. The solid progress of nanomedicine. Drug Deliv Transl Res. 2020;10:726–9.

  2. 2.

    Hrkach J, Langer R. From micro to nano: evolution and impact of drug delivery in treating disease. Drug Deliv Transl Res. 2020;10:567–70.

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Soetaert F, Korangath P, Serantes D, Fiering S, Ivkov R. Cancer therapy with iron oxide nanoparticles: agents of thermal and immune therapies. Adv Drug Deliv Rev. 2020. https://doi.org/10.1016/j.addr.2020.06.025.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med. 2019;4:e10143.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Venditti I. Morphologies and functionalities of polymeric nanocarriers as chemical tools for drug delivery: a review. J King Saud Univ - Sci. 2019;31:398–411.

    Article  Google Scholar 

  6. 6.

    Cadete A, Alonso MJ. Targeting cancer with hyaluronic acid-based nanocarriers: recent advances and translational perspectives. Nanomedicine. 2016;11:2341–57.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Saraiva SM, Castro-López V, Pañeda C, Alonso MJ. Synthetic nanocarriers for the delivery of polynucleotides to the eye. Eur J Pharm Sci. 2017;103:5–18.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Durán-Lobato M, Niu Z, Alonso MJ. Oral delivery of biologics for precision medicine. Adv Mater. 2020;32:1–27.

    Google Scholar 

  9. 9.

    Gigault J, Pettibone JM, Schmitt C, Hackley VA. Rational strategy for characterization of nanoscale particles by asymmetric-flow field flow fractionation: a tutorial. Anal Chim Acta. 2014;809:9–24.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Varenne F, Makky A, Delmas MG, Violleau F, Vauthier C. Multimodal dispersion of nanoparticles: a comprehensive evaluation of size distribution with 9 size measurement methods. Pharm Res. 2016;33:1220–34.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Mehn D, Caputo F, Roesslein M. Measurement of particle size distribution of protein binding, of mean molecular weight of polymeric NP components, study of batch to batch reproducibility, and study of release of free coating from NP surface by FFF- MALS. In: EUNCLPCC-022. 2017. http://www.euncl.eu/about-us/assay-cascade/PDFs/PCC/EUNCL-PCC-022.pdf?m=1468937868. Accessed 28 Aug 2020.

  12. 12.

    Wagner M, Holzschuh S, Traeger A, Fahr A, Schubert US. Asymmetric flow field-flow fractionation in the field of nanomedicine. Anal Chem. 2014;86:5201–10.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Zattoni A, Roda B, Borghi F, Marassi V, Reschiglian P. Flow field-flow fractionation for the analysis of nanoparticles used in drug delivery. J Pharm Biomed Anal. 2014;87:53–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Malik MI, Pasch H. Field-flow fractionation: new and exciting perspectives in polymer analysis. Prog Polym Sci. 2016;63:42–85.

    CAS  Article  Google Scholar 

  15. 15.

    Zhang X, Li Y, Shen S, Lee S, Dou H. Field-flow fractionation: a gentle separation and characterization technique in biomedicine. TrAC - Trends Anal Chem. 2018;108:231–8.

    CAS  Article  Google Scholar 

  16. 16.

    Contado C. Field flow fractionation techniques to explore the “nano-world.” Anal Bioanal Chem. 2017;409:2501–18.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Shakiba S, Astete CE, Paudel S, Sabliov CM, Rodrigues DF, Louie SM. Emerging investigator series: polymeric nanocarriers for agricultural applications: synthesis, characterization, and environmental and biological interactions. Environ Sci Nano. 2020;7:37–67.

    CAS  Article  Google Scholar 

  18. 18.

    Eskelin K, Poranen MM, Oksanen HM. Asymmetrical flow field-flow fractionation on virus and virus-like particle applications. Microorganisms. 2019;7:555.

    CAS  PubMed Central  Article  Google Scholar 

  19. 19.

    Kavurt UB, Marioli M, Kok WT, Stamatialis D. Membranes for separation of biomacromolecules and bioparticles via flow field-flow fractionation. J Chem Technol Biotechnol. 2015;90:11–8.

    CAS  Article  Google Scholar 

  20. 20.

    Jönsson JÅ, Carlshaf A. Flow field flow fractionation in hollow cylindrical fibers. Anal Chem. 1989;61:11–8.

    Article  Google Scholar 

  21. 21.

    Moon MH, Kwon H, Park I. Stopless flow injection in asymmetrical flow field-flow fractionation using a frit inlet. Anal Chem. 1997;69:1436–40.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Prestel H, Niessner R, Panne U. Increasing the sensitivity of asymmetrical flow field-flow fractionation: slot outlet technique. Anal Chem. 2006;78:6664–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Johann C, Elsenberg S, Schuch H, Rösch U. Instrument and method to determine the electrophoretic mobility of nanoparticles and proteins by combining electrical and flow field-flow fractionation. Anal Chem. 2015;87:4292–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Hovingh ME, Thompson GH, Giddings JC. Column parameters in thermal field-flow fractionation. Anal Chem. 1970;42:195–203.

    CAS  Article  Google Scholar 

  25. 25.

    Giddings JC. Cyclical-field field-flow fractionation: a new method based on transport rates. Anal Chem. 1986;58:2052–6.

    CAS  Article  Google Scholar 

  26. 26.

    Giddings JC, Yang FJF, Myers MN. Sedimentation field-flow fractionation. Anal Chem. 1974;46:1917–24.

    CAS  Article  Google Scholar 

  27. 27.

    Müller D, Cattaneo S, Meier F, Welz R, de Mello AJ. Nanoparticle separation with a miniaturized asymmetrical flow field-flow fractionation cartridge. Front Chem. 2015;3:1–6.

    Article  CAS  Google Scholar 

  28. 28.

    Sant HJ, Gale BK. Microscale field-flow fractionation: theory and practice. In: Hardt S, Schönfeld F, editors. Microfluidic technologies for miniaturized analysis systems. Boston: Springer; 2007. p. 471–521.

    Google Scholar 

  29. 29.

    Liu MK, Giddings JC. Separation and measurement of diffusion coefficients of linear and circular DNAs by flow field-flow fractionation. Macromolecules. 1993;26:3576–88.

    CAS  Article  Google Scholar 

  30. 30.

    Wahlund KG. Flow field-flow fractionation: critical overview. J Chromatogr A. 2013;1287:97–112.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Woo S, Lee JY, Choi W, Moon MH. Characterization of ultrahigh-molecular weight cationic polyacrylamide using frit-inlet asymmetrical flow field-flow fractionation and multi-angle light scattering. J Chromatogr A. 2016;1429:304–10.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Lee H, Kim JY, Choi W, Moon MH. Effect of cationic monomer content on polyacrylamide copolymers by frit-inlet asymmetrical flow field-flow fractionation/multi-angle light scattering. J Chromatogr A. 2017;1503:49–56.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Kim YB, Yang JS, Moon MH. Investigation of steric transition with field programming in frit inlet asymmetrical flow field-flow fractionation. J Chromatogr A. 2018;1576:131–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Williams PS. Fractionating power and outlet stream polydispersity in asymmetrical flow field-flow fractionation. Part II: programmed operation. Anal Bioanal Chem. 2017;409:317–34.

  35. 35.

    Håkansson A, Magnusson E, Bergenståhl B, Nilsson L. Hydrodynamic radius determination with asymmetrical flow field-flow fractionation using decaying cross-flows. Part I. A theoretical approach. J Chromatogr A. 2012;1253:120–6.

  36. 36.

    Makan AC, Spallek MJ, du Toit M, Klein T, Pasch H. Advanced analysis of polymer emulsions: particle size and particle size distribution by field-flow fractionation and dynamic light scattering. J Chromatogr A. 2016;1442:94–106.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Meisterjahn B, Wagner S, von der Kammer F, Hennecke D, Hofmann T. Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: influence of run conditions and of particle and membrane charges. J Chromatogr A. 2016;1440:150–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Klein M, Menta M, Dacoba TG, Crecente-Campo J, Alonso MJ, Dupin D, et al. Advanced nanomedicine characterization by DLS and AF4-UV-MALS: application to a HIV nanovaccine. J Pharm Biomed Anal. 2020;179:113017.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Parot J, Caputo F, Mehn D, Hackley VA, Calzolai L. Physical characterization of liposomal drug formulations using multi-detector asymmetrical-flow field flow fractionation. J Control Release. 2020;320:495–510.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Baalousha M, Stolpe B, Lead JR. Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. J Chromatogr A. 2011;1218:4078–103.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Ulrich A, Losert S, Bendixen N, Al-Kattan A, Hagendorfer H, Nowack B, et al. Critical aspects of sample handling for direct nanoparticle analysis and analytical challenges using asymmetric field flow fractionation in a multi-detector approach. J Anal At Spectrom. 2012;27:1120–30.

    CAS  Article  Google Scholar 

  42. 42.

    Bendixen N, Losert S, Adlhart C, Lattuada M, Ulrich A. Membrane-particle interactions in an asymmetric flow field flow fractionation channel studied with titanium dioxide nanoparticles. J Chromatogr A. 2014;1334:92–100.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Agarwal K, Saji M, Lazaroff SM, Palmer AF, Ringel MD, Paulaitis ME. Analysis of exosome release as a cellular response to MAPK pathway inhibition. Langmuir. 2015;31:5440–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Witos J, Karjalainen E, Tenhu H, Wiedmer SK. CE and asymmetrical flow-field flow fractionation studies of polymer interactions with surfaces and solutes reveal conformation changes of polymers. J Sep Sci. 2020;43:2495–505.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Moquin A, Winnik FM, Maysinger D. Separation science: principles and applications for the analysis of bionanoparticles by asymmetrical flow field-flow fractionation (AF4). Methods Mol Biol. 2013;991:325–41.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Schachermeyer S, Ashby J, Kwon M, Zhong W. Impact of carrier fluid composition on recovery of nanoparticles and proteins in flow field flow fractionation. J Chromatogr A. 2012;1264:72–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Boll B, Josse L, Heubach A, Hochenauer S, Finkler C, Huwyler J, et al. Impact of non-ideal analyte behavior on the separation of protein aggregates by asymmetric flow field-flow fractionation. J Sep Sci. 2018;41:2854–64.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Liu J, Zhu Q, Shire SJ, Demeule B. Assessing and improving asymmetric flow field-flow fractionation of therapeutic proteins. In: Williams S, Caldwell K, editors. Field-Flow Fractionation in Biopolymer Analysis. Vienna: Springer; 2012. p. 89–101.

    Google Scholar 

  49. 49.

    Marioli M, Kok WT. Recovery, overloading, and protein interactions in asymmetrical flow field-flow fractionation. Anal Bioanal Chem. 2019;411:2327–38.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Ashby J, Schachermeyer S, Duan Y, Jimenez LA, Zhong W. Probing and quantifying DNA-protein interactions with asymmetrical flow field-flow fractionation. J Chromatogr A. 2014;1358:217–24.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Marioli M, Kavurt B, Stamatialis D, Kok WT. Application of microstructured membranes for increasing retention, selectivity and resolution in asymmetrical flow field-flow fractionation. J Chromatogr A. 2019;1605:360347.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Marioli M, Kok WT. Continuous asymmetrical flow field-flow fractionation for the purification of proteins and nanoparticles. Sep Purif Technol. 2020;242:116744.

    CAS  Article  Google Scholar 

  53. 53.

    Caldwell KD, Brimhall SL, Gao Y, Giddings JC. Sample overloading effects in polymer characterization by field-flow fractionation. J Appl Polym Sci. 1988;36:703–19.

    CAS  Article  Google Scholar 

  54. 54.

    Litzén A, Wahlund KG. Effects of temperature, carrier composition and sample load in asymmetrical flow field-flow fractionation. J Chromatogr A. 1991;548:393–406.

    Article  Google Scholar 

  55. 55.

    Santacruz S. Characterisation of cationic potato starch by asymmetrical flow field-flow fractionation. Influence of ionic strength and degree of substitution. Carbohydr Polym. 2014;106:166–71.

  56. 56.

    Pitkänen L, Striegel AM. Polysaccharide characterization by hollow-fiber flow field-flow fractionation with on-line multi-angle static light scattering and differential refractometry. J Chromatogr A. 2015;1380:146–55.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Wang JL, Alasonati E, Fisicaro P, Benedetti MF, Martin M. Theoretical and experimental investigation of the focusing position in asymmetrical flow field-flow fractionation (AF4). J Chromatogr A. 2018;1561:67–75.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Bria CRM, Skelly PW, Morse JR, Schaak RE, Williams SKR. Semi-preparative asymmetrical flow field-flow fractionation: a closer look at channel dimensions and separation performance. J Chromatogr A. 2017;1499:149–57.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Tome T, Zigart N, Casar Z, Obreza A. Development and optimization of liquid chromatography analytical methods by using AQbD principles: Overview and recent advances. Org Process Res Dev. 2019;23:1784–802.

    CAS  Article  Google Scholar 

  60. 60.

    Kuklenyik Z, Gardner M, Parks B, Schieltz D, Rees J, McWilliams L, et al. Multivariate DoE optimization of asymmetric flow field flow fractionation coupled to quantitative LC-MS/MS for analysis of lipoprotein subclasses. Chromatography. 2015;2:96–117.

    CAS  Article  Google Scholar 

  61. 61.

    Omar J, Boix A, Kerckhove G, von Holst C. Optimisation of asymmetric flow field-flow fractionation for the characterisation of nanoparticles in coated polydisperse TiO2 with applications in food and feed. Food Addit Contam - Part A. 2016;33:1775–84.

    CAS  Article  Google Scholar 

  62. 62.

    Galyean AA, Filliben JJ, Holbrook RD, Vreeland WN, Weinberg HS. Asymmetric flow field flow fractionation with light scattering detection—an orthogonal sensitivity analysis. J Chromatogr A. 2016;1473:122–32.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Taha MS, Padmakumar S, Singh A, Amiji MM. Critical quality attributes in the development of therapeutic nanomedicines toward clinical translation. Drug Deliv Transl Res. 2020;10:766–90.

    PubMed  Article  Google Scholar 

  64. 64.

    Halamoda-Kenzaoui B, Baconnier S, Bastogne T, Bazile D, Boisseau P, Borchard G, et al. Bridging communities in the field of nanomedicine. Regul Toxicol Pharmacol. 2019;106:187–96.

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Gross J, Sayle S, Karow AR, Bakowsky U, Garidel P. Nanoparticle tracking analysis of particle size and concentration detection in suspensions of polymer and protein samples: influence of experimental and data evaluation parameters. Eur J Pharm Biopharm. 2016;104:30–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Patois E, Capelle MAH, Palais C, Gurny R, Arvinte T. Evaluation of nanoparticle tracking analysis (NTA) in the characterization of therapeutic antibodies and seasonal influenza vaccines: Pros and cons. J Drug Deliv Sci Technol. 2012;22:427–33.

    CAS  Article  Google Scholar 

  67. 67.

    Hupfeld S, Holsaeter AM, Skar M, Frantzen CB, Brandl M. Liposome size analysis by dynamic/static light scattering upon size exclusion-/field flow-fractionation. J Nanosci Nanotechnol. 2006;6:3025–31.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Zhang J, Haas RM, Leone AM. Polydispersity characterization of lipid nanoparticles for siRNA delivery using multiple detection size-exclusion chromatography. Anal Chem. 2012;84:6088–96.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    González-Espinosa Y, Sabagh B, Moldenhauer E, Clarke P, Goycoolea FM. Characterisation of chitosan molecular weight distribution by multi-detection asymmetric flow-field flow fractionation (AF4) and SEC. Int J Biol Macromol. 2019;136:911–9.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  70. 70.

    Pourcelle V, Freichels H, Stoffelbach F, Auzély-Velty R, Jérôme C, Marchand-Brynaert J. Light induced functionalization of PCL-PEG block copolymers for the covalent immobilization of biomolecules. Biomacromol. 2009;10:966–74.

    CAS  Article  Google Scholar 

  71. 71.

    Abdelmohsen LKEA, Rikken RSM, Christianen PCM, van Hest JCM, Wilson DA. Shape characterization of polymersome morphologies via light scattering techniques. Polymer. 2016;107:445–9.

    CAS  Article  Google Scholar 

  72. 72.

    Sitar S, Vezočnik V, Maček P, Kogej K, Pahovnik D, Žagar E. Pitfalls in size characterization of soft particles by dynamic light scattering online coupled to asymmetrical flow field-flow fractionation. Anal Chem. 2017;89:11744–52.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Bartczak D, Vincent P, Goenaga-Infante H. Determination of size- and number-based concentration of silica nanoparticles in a complex biological matrix by online techniques. Anal Chem. 2015;87:5482–5.

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Adkins GB, Sun E, Coreas R, Zhong W. Asymmetrical flow field flow fractionation coupled to nanoparticle tracking analysis for rapid online characterization of nanomaterials. Anal Chem. 2020;92:7071–8.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Drexel R, Siupa A, Carnell-Morris P, Carboni M, Sullivan J, Meier F. Fast and purification-free characterization of bio-nanoparticles in biological media by electrical asymmetrical flow field-flow fractionation hyphenated with multi-angle light scattering and nanoparticle tracking analysis detection. Molecules. 2020;25:4703.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  76. 76.

    Dalpiaz A, Contado C, Mari L, Perrone D, Pavan B, Paganetto G, et al. Development and characterization of PLGA nanoparticles as delivery systems of a prodrug of zidovudine obtained by its conjugation with ursodeoxycholic acid. Drug Deliv. 2014;21:221–32.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Miwa S, Takahashi R, Rössel C, Matsumoto S, Fujii S, Ha Lee J, et al. Core–shell–corona micelles from a polyether-based triblock terpolymer: Investigation of the pH-dependent micellar structure. Langmuir. 2018;34:7813–20.

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Shimoda A, Sawada S, Kano A, Maruyama A, Moquin A, Winnik FM, et al. Dual crosslinked hydrogel nanoparticles by nanogel bottom-up method for sustained-release delivery. Colloids Surfaces B Biointerfaces. 2012;99:38–44.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Fujii S, Yamada S, Araki M, Lee JH, Takahashi R, Sakurai K. Discrete and discontinuous increase in the micellar aggregation number: effects of the alkyl chain length on platonic micelles. Langmuir. 2019;35:3156–61.

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Ennen F, Fenner P, Stoychev G, Boye S, Lederer A, Voit B, et al. Coil-like enzymatic biohybrid structures fabricated by rational design: controlling size and enzyme activity over sequential nanoparticle bioconjugation and filtration steps. ACS Appl Mater Interfaces. 2016;8:6261–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Fingernagel J, Boye S, Kietz A, Höbel S, Wozniak K, Moreno S, et al. Mono- and polyassociation processes of pentavalent biotinylated PEI glycopolymers for the fabrication of biohybrid structures with targeting properties. Biomacromol. 2019;20:3408–24.

    CAS  Article  Google Scholar 

  82. 82.

    Wyatt PJ. Measuring nanoparticles in the size range to 2000 nm. J Nanoparticle Res. 2018;20:322.

    Article  Google Scholar 

  83. 83.

    Andersson M, Wittgren B, Wahlund KG. Accuracy in multiangle light scattering measurements for molar mass and radius estimations. Model calculations and experiments Anal Chem. 2003;75:4279–91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Wyatt PJ. Measurement of special nanoparticle structures by light scattering. Anal Chem. 2014;86:7171–83.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Pennetta C, Floresta G, Graziano ACE, Cardile V, Rubino L, Galimberti M, et al. Functionalization of single and multi-walled carbon nanotubes with polypropylene glycol decorated pyrrole for the development of doxorubicin nano-conveyors for cancer drug delivery. Nanomaterials. 2020;10:1073.

    CAS  PubMed Central  Article  Google Scholar 

  86. 86.

    Gigault J, Le Hécho I, Dubascoux S, Potin-Gautier M, Lespes G. Single walled carbon nanotube length determination by asymmetrical-flow field-flow fractionation hyphenated to multi-angle laser-light scattering. J Chromatogr A. 2010;1217:7891–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Gigault J, Grassl B, Le Hécho I, Lespes G. Accurate determination of the length of carbon nanotubes using multi-angle light scattering. Microchim Acta. 2011;175:265–71.

    CAS  Article  Google Scholar 

  88. 88.

    Gigault J, Grassl B, Lespes G. Multi-wall carbon nanotube aqueous dispersion monitoring by using A4F-UV-MALS. Anal Bioanal Chem. 2011;401:3345–53.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Gigault J, Hackley VA. Observation of size-independent effects in nanoparticle retention behavior during asymmetric-flow field-flow fractionation. Anal Bioanal Chem. 2013;405:6251–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90.

    Till U, Gaucher M, Amouroux B, Gineste S, Lonetti B, Marty J-D, et al. Frit Inlet Field-flow fractionation techniques for the characterization of polyion complex self-assemblies. J Chromatogr A. 2017;1481:101–10.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Machado MGC, Pound-Lana G, de Oliveira MA, Lanna EG, Fialho MCP, de Brito ACF, et al. Labeling PLA-PEG nanocarriers with IR780: physical entrapment versus covalent attachment to polylactide. Drug Deliv Transl Res. 2020. https://doi.org/10.1007/s13346-020-00812-6.

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Seibert JB, Viegas JSR, Almeida TC, Amparo TR, Rodrigues IV, Lanza JS, et al. Nanostructured systems improve the antimicrobial potential of the essential oil from Cymbopogon densiflorus leaves. J Nat Prod. 2019;82:3208–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Wyatt PJ. Light scattering and the absolute characterization of macromolecules. Anal Chim Acta. 1993;272:1–40.

    CAS  Article  Google Scholar 

  94. 94.

    Gennari A, de la Rosa JMR, Hohn E, Pelliccia M, Lallana E, Donno R, et al. The different ways to chitosan/hyaluronic acid nanoparticles: Templated vs direct complexation. Influence of particle preparation on morphology, cell uptake and silencing efficiency. Beilstein J Nanotechnol. 2019;10:2594–608.

  95. 95.

    Chen Y, Zhang Y, Zhou Y, Luo J, Su Z. Asymmetrical flow field-flow fractionation coupled with multi-angle laser light scattering for stability comparison of virus-like particles in different solution environments. Vaccine. 2016;34:3164–70.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96.

    Safenkova IV, Slutskaya ES, Panferov VG, Zherdev AV, Dzantiev BB. Complex analysis of concentrated antibody-gold nanoparticle conjugates’ mixtures using asymmetric flow field-flow fractionation. J Chromatogr A. 2016;1477:56–63.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Mehn D, Caputo F, Calzolai L, Saint-Antonin F, Courant T, Wick P, et al. Larger or more? Nanoparticle characterisation methods for recognition of dimers. RSC Adv. 2017;7:27747–54.

    CAS  Article  Google Scholar 

  98. 98.

    Oda CMR, Malfatti-Gasperini AA, Malachias A, Pound-Lana G, Mosqueira VCF, Fernandes RS, et al. Physical and biological effects of paclitaxel encapsulation on disteraroylphosphatidylethanolamine-polyethyleneglycol polymeric micelles. Colloids Surfaces B Biointerfaces. 2020;188:110760.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Lowry GV, Hill RJ, Harper S, Rawle AF, Hendren CO, Klaessig F, et al. Guidance to improve the scientific value of zeta-potential measurements in nanoEHS. Environ Sci Nano. 2016;3:953–65.

    CAS  Article  Google Scholar 

  100. 100.

    You Z, Jakubowski N, Panne U, Weidner SM. Separation of polystyrene nanoparticles with different coatings using two-dimensional off-line coupling of asymmetrical flow field flow fractionation and capillary electrophoresis. J Chromatogr A. 2019;1593:119–26.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101.

    You Z, Nirmalananthan-Budau N, Resch-Genger U, Panne U, Weidner SM. Separation of polystyrene nanoparticles bearing different carboxyl group densities and functional groups quantification with capillary electrophoresis and asymmetrical flow field flow fractionation. J Chromatogr A. 2020;1626:461392.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102.

    Leong HS, Butler KS, Brinker CJ, Azzawi M, Conlan S, Dufés C, et al. On the issue of transparency and reproducibility in nanomedicine. Nat Nanotechnol. 2019;14:629–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Duthen S, Rochat C, Kleiber D, Violleau F, Daydé J, Raynaud C, et al. Physicochemical characterization and study of molar mass of industrial gelatins by AsFlFFF-UV/MALS and chemometric approach. PLoS One. 2018;13:1–14.

    Article  CAS  Google Scholar 

  104. 104.

    Volant C, Gilet A, Beddiaf F, Collinet-Fressancourt M, Falourd X, Descamps N, et al. Multiscale structure of starches grafted with hydrophobic groups: a new analytical strategy. Molecules. 2020;25:2827.

    CAS  PubMed Central  Article  Google Scholar 

  105. 105.

    Andrianov AK, Marin A, Fuerst TR. Molecular-level interactions of polyphosphazene immunoadjuvants and their potential role in antigen presentation and cell stimulation. Biomacromol. 2016;17:3732–42.

    CAS  Article  Google Scholar 

  106. 106.

    Andrianov AK, Marin A, Wang R, Chowdhury A, Agnihotri P, Yunus AS, et al. In vivo and in vitro potency of polyphosphazene immunoadjuvants with hepatitis C virus antigen and the role of their supramolecular assembly. Mol Pharm. 2020. https://doi.org/10.1021/acs.molpharmaceut.0c00487.

    Article  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Wang L, Lee JY, Gao L, Yin J, Duan Y, Jimenez LA, et al. A DNA aptamer for binding and inhibition of DNA methyltransferase 1. Nucleic Acids Res. 2019;47:11527–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Borzova VA, Markossian KA, Kleymenov SY, Kurganov BI. A change in the aggregation pathway of bovine serum albumin in the presence of arginine and its derivatives. Sci Rep. 2017;7:3984.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  109. 109.

    Manning RR, Wilson GA, Holcomb RE, Zbacnik NJ, Tellechea AA, Gilley-Dunn CL, et al. Denaturation and aggregation of interferon-τ in aqueous solution. Pharm Res. 2018;35:1–8.

    CAS  Article  Google Scholar 

  110. 110.

    Bayart C, Peronin S, Jean E, Paladino J, Talaga P, Le BM. The combined use of analytical tools for exploring tetanus toxin and tetanus toxoid structures. J Chromatogr B. 2017;1054:80–92.

    CAS  Article  Google Scholar 

  111. 111.

    Niu Z, Samaridou E, Jaumain E, Coëne J, Ullio G, Shrestha N, et al. PEG-PGA enveloped octaarginine-peptide nanocomplexes: aan oral peptide delivery strategy. J Control Release. 2018;276:125–39.

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Cadete A, Olivera A, Besev M, Dhal PK, Gonçalves L, Almeida AJ, et al. Self-assembled hyaluronan nanocapsules for the intracellular delivery of anticancer drugs. Sci Rep. 2019;9:11565.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  113. 113.

    Rabanel J-M, Hildgen P, Banquy X. Assessment of PEG on polymeric particles surface, a key step in drug carrier translation. J Control Release. 2014;185:71–87.

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Zillies JC, Zwiorek K, Winter G, Coester C. Method for quantifying the PEGylation of gelatin nanoparticle drug carrier systems using asymmetrical flow field-flow fractionation and refractive index detection. Anal Chem. 2007;79:4574–80.

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Fukuda I, Mochizuki S, Sakurai K. Competition of PEG coverage density and con-A recognition in mannose/PEG bearing nanoparticles. Colloids Surfaces B Biointerfaces. 2016;146:642–8.

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    John C, Herz T, Boos J, Langer K, Hempel G. Asymmetrical flow field-flow fractionation for the analysis of PEG-asparaginase. Talanta. 2016;146:335–9.

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Bregola L, Contado C, Martin M, Pasti L, Dondi F. Precision in differential field-flow fractionation: a chemometric study. J Sep Sci. 2007;30:2760–79.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  118. 118.

    Contado C, Mehn D, Gilliland D, Calzolai L. Characterization methods for studying protein adsorption on nano-polystyrene beads. J Chromatogr A. 2019;1606:460383.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  119. 119.

    Li JT, Caldwell KD, Rapoport N. Surface properties of pluronic-coated polymeric colloids. Langmuir. 1994;10:4475–82.

    CAS  Article  Google Scholar 

  120. 120.

    Shi L, Caldwell KD. Mucin adsorption to hydrophobic surfaces. J Colloid Interface Sci. 2000;224:372–81.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  121. 121.

    Vermeulen L, Smedt D, Remaut SC, Braeckmans K. The proton sponge hypothesis: fable of fact? Eur J Pharm Biopharm. 2018;129:184–90.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  122. 122.

    Ma PL, D. Buschmann M, M. Winnik F. One-step analysis of DNA/chitosan complexes by Field-Flow Fractionation reveals particle size and free chitosan content. Biomacromolecules. 2010;11:549–54.

  123. 123.

    Ma PL, Buschmann MD, Winnik FM. Complete physicochemical characterization of DNA/chitosan complexes by multiple detection using asymmetrical flow field-flow fractionation. Anal Chem. 2010;82:9636–43.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  124. 124.

    Venkatesh S, Li J, Caldwell KD, Anderson BD. Compositional heterogeneity in parenteral lipid emulsions after sedimentation field flow fractionation. J Pharm Sci. 1998;87:859–66.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. 125.

    Schachermeyer S, Ashby J, Zhong W. Aptamer-protein binding detected by asymmetric flow field flow fractionation. J Chromatogr A. 2013;1295:107–13.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  126. 126.

    Bria CRM, Williams SKR. Impact of asymmetrical flow field-flow fractionation on protein aggregates stability. J Chromatogr A. 2016;1465:155–64.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  127. 127.

    Yamamoto T, Yokoyama M, Opanasopit P, Hayama A, Kawano K, Maitani Y. What are determining factors for stable drug incorporation into polymeric micelle carriers? Consideration on physical and chemical characters of the micelle inner core. J Control Release. 2007;123:11–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  128. 128.

    Esposito E, Ravani L, Contado C, Costenaro A, Drechsler M, Rossi D, et al. Clotrimazole nanoparticle gel for mucosal administration. Mater Sci Eng C. 2013;33:411–8.

    CAS  Article  Google Scholar 

  129. 129.

    Hinna AH, Hupfeld S, Kuntsche J, Brandl M. The use of asymmetrical flow field-flow fractionation with on-line detection in the study of drug retention within liposomal nanocarriers and drug transfer kinetics. J Pharm Biomed Anal. 2016;124:157–63.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  130. 130.

    Cortesi R, Valacchi G, Muresan XM, Drechsler M, Contado C, Esposito E, et al. Nanostructured lipid carriers (NLC) for the delivery of natural molecules with antimicrobial activity: production, characterisation and in vitro studies. J Microencapsul. 2017;34:63–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  131. 131.

    Oliveira LT, de Paula MA, Roatt BM, Garcia GM, Silva LSB, Reis AB, et al. Impact of dose and surface features on plasmatic and liver concentrations of biodegradable polymeric nanocapsules. Eur J Pharm Sci. 2017;105:19–32.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  132. 132.

    Pound-Lana GEN, Garcia GM, Trindade IC, Capelari-Oliveira P, Pontifice TG, Vilela JMC, et al. Phthalocyanine photosensitizer in polyethylene glycol-block-poly(lactide-co-benzyl glycidyl ether) nanocarriers: Probing the contribution of aromatic donor-acceptor interactions in polymeric nanospheres. Mater Sci Eng C. 2019;94:220–33.

    CAS  Article  Google Scholar 

  133. 133.

    Ehrhart J, Mingotaud A-F, Violleau F. Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi elastic light scattering for characterization of poly(ethyleneglycol-b-ɛ-caprolactone) block copolymer self-assemblies used as drug carriers for photodynamic therapy. J Chromatogr A. 2011;1218:4249–56.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  134. 134.

    Wankar J, Bonvicini F, Benkovics G, Marassi V, Malanga M, Fenyvesi E, et al. Widening the therapeutic perspectives of clofazimine by its loading in sulfobutylether β-Cyclodextrin nanocarriers: nanomolar IC50 values against MDR S. epidermidis. Mol Pharm. 2018;15:3823–36.

  135. 135.

    Menéndez-Miranda M, Encinar JR, Costa-Fernández JM, Sanz-Medel A. Asymmetric flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry for the quantification of quantum dots bioconjugation efficiency. J Chromatogr A. 2015;1422:247–52.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  136. 136.

    Bouzas-Ramos D, García-Alonso JI, Costa-Fernández JM, Ruiz EJ. Quantitative assessment of individual populations present in nanoparticle-antibody conjugate mixtures using AF4-ICP-MS/MS. Anal Chem. 2019;91:3567–74.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  137. 137.

    García-Cortés M, Fernández-Argüelles MT, Costa-Fernández JM, Sanz-Medel A. Sensitive prostate specific antigen quantification using dihydrolipoic acid surface-functionalized phosphorescent quantum dots. Anal Chim Acta. 2017;987:118–26.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  138. 138.

    Huclier-Markai S, Grivaud-Le Du A, N’tsiba E, Montavon G, Mougin-Degraef M, Barbet J. Coupling a gamma-ray detector with asymmetrical flow field flow fractionation (AF4): application to a drug-delivery system for alpha-therapy. J Chromatogr A. 2018;1573:107–14.

  139. 139.

    Leeman M, Albers WM, Bombera R, Kuncova-Kallio J, Tuppurainen J, Nilsson L. Asymmetric flow field-flow fractionation coupled to surface plasmon resonance detection for analysis of therapeutic proteins in blood serum. Anal Bioanal Chem. 2021;413:117–27.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  140. 140.

    Wauters AC, Pijpers IAB, Mason AF, Williams DS, Tel J, Abdelmohsen LKEA, et al. Development of morphologically discrete PEG-PDLLA nanotubes for precision nanomedicine. Biomacromol. 2019;20:177–83.

    CAS  Article  Google Scholar 

  141. 141.

    Iavicoli P, Urbán P, Bella A, Ryadnov MG, Rossi F, Calzolai L. Application of asymmetric flow field-flow fractionation hyphenations for liposome-antimicrobial peptide interaction. J Chromatogr A. 2015;1422:260–9.

    CAS  PubMed  Article  Google Scholar 

  142. 142.

    Monteiro LOF, Malachias Â, Pound-Lana G, Magalhães-Paniago R, C. F. Mosqueira V, C. Oliveira M, et al. Paclitaxel-loaded pH-sensitive liposome: new insights on structural and physicochemical characterization. Langmuir. 2018;34:5728–37.

  143. 143.

    Moquin A, Ji J, Neibert K, Winnik F, M., Maysinger D. Encapsulation and delivery of neutrophic proteins and hydrophobic agents using PMOXA–PDMS–PMOXA triblock polymersomes. ACS Omega. 2018;3:13882–93.

  144. 144.

    Gumz H, Boye S, Iyisan B, Krönert V, Formanek P, Voit B, et al. Toward functional synthetic cells: in-depth study of nanoparticle and enzyme diffusion through a cross-linked polymersome membrane. Adv Sci. 2019;6:1801299.

    Article  CAS  Google Scholar 

  145. 145.

    Decker C, Fahr A, Kuntsche J, May S. Selective partitioning of cholesterol and a model drug into liposomes of varying size. Chem Phys Lipids. 2012;165:520–9.

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Van Haute D, Jiang W, Mudalige T. Evaluation of size-based distribution of drug and excipient in amphotericin B liposomal formulation. Int J Pharm. 2019;569:118603.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  147. 147.

    Grudzinski W, Sagan J, Welc R, Luchowski R, Gruszecki WI. Molecular organization, localization and orientation of antifungal antibiotic amphotericin B in a single lipid bilayer. Sci Rep. 2016;6:32780.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. 148.

    Ansar SM, Mudalige T. Characterization of doxorubicin liposomal formulations for size-based distribution of drug and excipients using asymmetric-flow field-flow fractionation (AF4) and liquid chromatography-mass spectrometry (LC-MS). Int J Pharm. 2020;574:118906.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  149. 149.

    Hu Y, Crist RM, Clogston JD. The utility of asymmetric flow field-flow fractionation for preclinical characterization of nanomedicines. Anal Bioanal Chem. 2020;412:425–38.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  150. 150.

    Boye S, Polikarpov N, Appelhans D, Lederer A. An alternative route to dye-polymer complexation study using asymmetrical flow field-flow fractionation. J Chromatogr A. 2010;1217:4841–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  151. 151.

    Marassi V, Casolari S, Roda B, Zattoni A, Reschiglian P, Panzavolta S, et al. Hollow-fiber flow field-flow fractionation and multi-angle light scattering investigation of the size, shape and metal-release of silver nanoparticles in aqueous medium for nano-risk assessment. J Pharm Biomed Anal. 2015;106:92–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  152. 152.

    Tan Z, Bai Q, Yin Y, Zhang Y, Chen Q, Moon MH, et al. On-line determination of soluble Zn content and size of the residual fraction in PM2.5 incubated in various aqueous media. Sci Total Environ. 2020;724:138309.

  153. 153.

    D’Souza S, DeLuca PP. Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm Res. 2006;23:460–74.

  154. 154.

    Nothnagel L, Wacker MG. How to measure release from nanosized carriers? Eur J Pharm Sci. 2018;120:199–211.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  155. 155.

    Wallenwein CM, Nova MV, Janas C, Jablonka L, Gao GF, Thurn M, et al. A dialysis-based in vitro drug release assay to study dynamics of the drug-protein transfer of temoporfin liposomes. Eur J Pharm Biopharm. 2019;143:44–50.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  156. 156.

    Fahr A, Liu X. Utilization of liposomes for studying drug transfer and uptake. In: Weissig V, editor. Liposomes. Methods in Molecular Biology (Methods and Protocols), vol 606. Totowa: Humana Press; 2010. pp. 1689–99.

  157. 157.

    Abouelmagd SA, Sun B, Chang AC, Ku YJ, Yeo Y. Release kinetics study of poorly water-soluble drugs from nanoparticles: are we doing it right? Mol Pharm. 2015;12:997–1003.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. 158.

    Hinna A, Steiniger F, Hupfeld S, Brandl M, Kuntsche J. Asymmetrical flow field-flow fractionation with on-line detection for drug transfer studies: a feasibility study. Anal Bioanal Chem. 2014;406:7827–39.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  159. 159.

    Hinna A, Steiniger F, Hupfeld S, Stein P, Kuntsche J, Brandl M. Filter-extruded liposomes revisited: a study into size distributions and morphologies in relation to lipid-composition and process parameters. J Liposome Res. 2016;26:11–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  160. 160.

    Hinna AH, Hupfeld S, Kuntsche J, Bauer-Brandl A, Brandl M. Mechanism and kinetics of the loss of poorly soluble drugs from liposomal carriers studied by a novel flow field-flow fractionation-based drug release-/transfer-assay. J Control Release. 2016;232:228–37.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  161. 161.

    Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71:115–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  162. 162.

    Cohen LH, Nicoll-Griffith DA. Plasma protein binding methods in drug discovery and development: bioanalysis. In: Lyubimov A V., editor. Encycl Drug Metab Interact. 2012.

  163. 163.

    Madörin M, Van Hoogevest P, Hilfiker R, Langwost B, Kresbach GM, Ehrat M, et al. Analysis of drug/plasma protein interactions by means of asymmetrical flow field-flow fractionation. Pharm Res. 1997;14:1706–12.

    PubMed  Article  PubMed Central  Google Scholar 

  164. 164.

    Park I, Paeng KJ, Yoon Y, Song JH, Moon MH. Separation and selective detection of lipoprotein particles of patients with coronary artery disease by frit-inlet asymmetrical flow field-flow fractionation. J Chromatogr B. 2002;780:415–22.

    CAS  Article  Google Scholar 

  165. 165.

    Dou H, Li Y, Choi J, Huo S, Ding L, Shen S, et al. Asymmetrical flow field-flow fractionation coupled with multiple detections: a complementary approach in the characterization of egg yolk plasma. J Chromatogr A. 2016;1465:165–74.

    CAS  PubMed  Article  Google Scholar 

  166. 166.

    Leeman M, Choi J, Hansson S, Storm MU, Nilsson L. Proteins and antibodies in serum, plasma, and whole blood—size characterization using asymmetrical flow field-flow fractionation (AF4). Anal Bioanal Chem. 2018;410:4867–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  167. 167.

    Bria CRM, Afshinnia F, Skelly PW, Rajendiran TM, Kayampilly P, Thomas TP, et al. Asymmetrical flow field-flow fractionation for improved characterization of human plasma lipoproteins. Anal Bioanal Chem. 2019;411:777–86.

    CAS  PubMed  Article  Google Scholar 

  168. 168.

    Holzschuh S, Kaeß K, Fahr A, Decker C. Quantitative in vitro assessment of liposome stability and drug transfer employing asymmetrical flow field-flow fractionation (AF4). Pharm Res. 2016;33:842–55.

    CAS  PubMed  Article  Google Scholar 

  169. 169.

    de Oliveira MA, Guimarães Carvalho Machado M, Dias Silva SE, Leite Nascimento T, Martins Lima E, Pound-Lana G, et al. IR780-polymer conjugates for stable near-infrared labeling of biodegradable polyester-based nanocarriers. Eur Polym J. Elsevier Ltd; 2019;120:109255.

  170. 170.

    Schmid M, Häusele B, Junk M, Brookes E, Frank J, Cölfen H. High-resolution asymmetrical flow field-flow fractionation data evaluation via Richardson-Lucy-based fractogram correction. Anal Chem. 2018;90:13978–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  171. 171.

    Holzschuh S, Kaeß K, Bossa GV, Decker C, Fahr A, May S. Investigations of the influence of liposome composition on vesicle stability and drug transfer in human plasma: a transfer study. J Liposome Res. 2018;28:22–34.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  172. 172.

    Liu Y, Fens MHAM, Capomaccio RB, Mehn D, Scrivano L, Kok RJ, et al. Correlation between in vitro stability and pharmacokinetics of poly(ε-caprolactone)-based micelles loaded with a photosensitizer. J Control Release. 2020. https://doi.org/10.1016/j.jconrel.2020.10.040.

  173. 173.

    Gorzkiewicz M, Appelhans D, Boye S, Lederer A, Voit B, Klajnert-Maculewicz B. Effect of the structure of therapeutic adenosine analogues on stability and surface electrostatic potential of their complexes with poly(propyleneimine) dendrimers. Macromol Rapid Commun. 2019;40:1900181.

    Article  CAS  Google Scholar 

  174. 174.

    Weber C, Morsbach S, Landfester K. Possibilities and limitations of different separation techniques for the analysis of the protein corona. Angew Chemie Int Ed. 2019;58:12787–94.

    CAS  Article  Google Scholar 

  175. 175.

    Berrecoso G, Crecente-Campo J, Alonso MJ. Unveiling the pitfalls of the protein corona of polymeric drug nanocarriers. Drug Deliv Transl Res. 2020;10:730–50.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  176. 176.

    Miller T, Rachel R, Besheer A, Uezguen S, Weigandt M, Goepferich A. Comparative investigations on in vitro serum stability of polymeric micelle formulations. Pharm Res. 2012;29:448–59.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  177. 177.

    Ashby J, Schachermeyer S, Pan S, Zhong W. Dissociation-based screening of nanoparticle-protein interaction via flow field-flow fractionation. Anal Chem. 2013;85:7494–501.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  178. 178.

    Ashby J, Pan S, Zhong W. Size and surface functionalization of iron oxide nanoparticles influence the composition and dynamic nature of their protein corona. ACS Appl Mater Interfaces. 2014;6:15412–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  179. 179.

    Hansen U, F. Thünemann A. Characterization of silver nanoparticles in cell culture medium containing fetal bovine serum. Langmuir. 2015;31:6842–52.

  180. 180.

    Wimuktiwan P, Shiowatana J, Siripinyanond A. Investigation of silver nanoparticles and plasma protein association using flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry (FlFFF-ICP-MS). J Anal At Spectrom. 2015;30:245–53.

    CAS  Article  Google Scholar 

  181. 181.

    Liu W, Worms IAM, Herlin-Boime N, Truffier-Boutry D, Michaud-Soret I, Mintz E, et al. Interaction of silver nanoparticles with metallothionein and ceruloplasmin: impact on metal substitution by Ag(i), corona formation and enzymatic activity. Nanoscale. 2017;9:6581–94.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  182. 182.

    Weber C, Simon J, Mailänder V, Morsbach S, Landfester K. Preservation of the soft protein corona in distinct flow allows identification of weakly bound proteins. Acta Biomater. 2018;76:217–24.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  183. 183.

    Weber C, Voigt M, Simon J, Danner A-K, Frey H, Mailä V, et al. Functionalization of liposomes with hydrophilic polymers results in macrophage uptake independent of the protein corona. Biomacromolecules. 2019;20:2989–99.

  184. 184.

    Alberg I, Kramer S, Schinnerer M, Hu Q, Seidl C, Leps C, et al. Polymeric nanoparticles with neglectable protein corona. Small. 2020;16:1907574.

    CAS  Article  Google Scholar 

  185. 185.

    Nwoko KC, Raab A, Cheyne L, Dawson D, Krupp E, Feldmann J. Matrix-dependent size modifications of iron oxide nanoparticles (Ferumoxytol) spiked into rat blood cells and plasma: characterisation with TEM, AF4-UV-MALS-ICP-MS/MS and spICP-MS. J Chromatogr B. 2019;1124:356–65.

    CAS  Article  Google Scholar 

  186. 186.

    Mudalige TK, Qu H, W. Linder S. Asymmetric Flow-Field Flow Fractionation hyphenated ICP-MS as an alternative to cloud point extraction for quantification of silver nanoparticles and silver speciation: Application for nanoparticles with a protein corona. Anal Chem. 2015;87:7395–401.

  187. 187.

    Koshkina O, Lang T, Thiermann R, Docter D, Stauber RH, Secker C, et al. Temperature-triggered protein adsorption on polymer-coated nanoparticles in serum. Langmuir. 2015;31:8873–81.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  188. 188.

    Kari OK, Ndika J, Parkkila P, Louna A, Lajunen T, Puustinen A, et al. In situ analysis of liposome hard and soft protein corona structure and composition in a single label-free workflow. Nanoscale. 2020;12:1728–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  189. 189.

    Oehlke K, Keppler JK, Milsmann J, Mayer-Miebach E, Greiner R, Steffen-Heins A. Adsorption of β-lactoglobulin to solid lipid nanoparticles (SLN) depends on encapsulated compounds. J Food Eng. 2019;247:144–51.

    CAS  Article  Google Scholar 

  190. 190.

    Bohsen MS, Elvang PA, Reder-Hilz B, Lenz V, Rosenberg J, Brandl M. (Sub)micron particles forming in aqueous dispersions of amorphous solid dispersions of the poorly soluble drug ABT-199: a combined particle optical counting and field-flow fractionation study. Eur J Pharm Sci. 2020;154:105497.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  191. 191.

    Greyling G, Pasch H. Fractionation of poly(methacrylic acid) and poly(vinyl pyridine) in aqueous and organic mobile phases by multidetector thermal field-flow fractionation. J Chromatogr A. 2017;1512:115–23.

    CAS  PubMed  Article  Google Scholar 

  192. 192.

    Greyling G, Pasch H. Characterization of charged polymer self-assemblies by multidetector thermal field-flow fractionation in aqueous mobile phases. J Chromatogr A. 2018;1532:175–81.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  193. 193.

    Shiri F, Petersen KE, Romanov V, Zou Q, Gale BK. Characterization and differential retention of Q beta bacteriophage virus-like particles using cyclical electrical field–flow fractionation and asymmetrical flow field–flow fractionation. Anal Bioanal Chem. 2020;412:1563–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  194. 194.

    Moquin A, Sharma A, Cui Y, Lau A, Maysinger D, Kakkar A. Asymmetric AB3 miktoarm star polymers: synthesis, self-assembly, and atudy of micelle stability using AF4 for efficient drug delivery. Macromol Biosci. 2015;15:1744–54.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  195. 195.

    Kafi K, Betting DJ, Yamada RE, Bacica M, Steward KK, Timmerman JM. Maleimide conjugation markedly enhances the immunogenicity of both human and murine idiotype-KLH vaccines. Mol Immunol. 2009;46:448–56.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  196. 196.

    Andrianov AK, Marin A, Deng J, Fuerst TR. Protein-loaded soluble and nanoparticulate formulations of ionic polyphosphazenes and their interactions on molecular and cellular levels. Mater Sci Eng C. 2020;106:110179.

    CAS  Article  Google Scholar 

  197. 197.

    Lee H, Ratanathanawongs Williams SK, Allison SD, Anchordoquy TJ. Analysis of self-assembled cationic lipid-DNA gene carrier complexes using flow field-flow fractionation and light scattering. Anal Chem. 2001;73:837–43.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  198. 198.

    Haladjova E, Rangelov S, Geisler M, Boye S, Lederer A, Mountrichas G, et al. Asymmetric flow field-flow fractionation investigation of magnetopolyplexes. Macromol Chem Phys. 2015;216:1862–7.

    CAS  Article  Google Scholar 

Download references

Funding

This work has been done within the 2-INTRATARGET project (PCIN-2017-129/AEI) funded by MINECO-PCIN-2017-129/AEI, under the frame of EuroNanoMed III (PCIN-2017-129/AEI), by FEDER/Spanish Ministry of Science, Innovation and Universities (ref.: SAF2017-86634-R) and by Xunta de Galicia, Consellería de Educación e Ordenación Universitaria (Grupos de Referencia Competitiva, ED431C 2017/09). F. Quattrini received financial support from the Xunta de Galicia (Centro singular de investigación de Galicia accreditation 2016-2019) and the European Union through the “European Regional Development Fund—ERDF” (ED431G/08). G. Berrecoso received financial support by the Xunta de Galicia (ED481A-2018/047) and the European Social Fund “FSE Galicia 2014-2020” through the “axudas de apoio á etapa predoutoral 2018” grant.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to José Crecente-Campo or María José Alonso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quattrini, F., Berrecoso, G., Crecente-Campo, J. et al. Asymmetric flow field-flow fractionation as a multifunctional technique for the characterization of polymeric nanocarriers. Drug Deliv. and Transl. Res. (2021). https://doi.org/10.1007/s13346-021-00918-5

Download citation

Keywords

  • Polymeric nanoparticles
  • Asymmetric flow field-flow fractionation
  • Biocorona
  • Drug delivery
  • Multiangle light scattering