Impact of the mucoadhesive lyophilized wafer loaded with novel carvedilol nano-spanlastics on biochemical markers in the heart of spontaneously hypertensive rat models

Abstract

The purpose of this investigation was to encapsulate carvedilol, a model beta-blocker antihypertensive into nano-spanlastics, followed by incorporation into 1% CMC wafer to afford a mucoadhesive buccal drug delivery system, targeting to sidestep the first-pass metabolism, improving the drug absorption and pharmacological effect, achieving non-invasive buccal delivery for treating hypertension. Carvedilol-loaded nano-spanlastics were rendered by ethanol injection technique, using 23 factorial design. The effect of formulation variables was investigated on nano-spanlastic characteristics. The optimal nano-spanlastic formulation (S2; containing 20% Brij 97) exhibited particle size (239.8 ± 5 nm), entrapment efficiency (98. 16 ± 1.44%), deformability index (8.74 ± 0.42 g), and the flux after 24 h (Jmax) (22.5 ± 0.25 (μg/cm2/h) with enhancement ratio 2.87 as well as excellent stability after storage. Permeation study verified the preeminence of the S2 formula. A confocal laser scanning microscope showed deep penetration of S2 through sheep buccal mucosa formula compared to rhodamine B solution. S2-based wafer showed acceptable characters (pH, swelling, drug content, residence time, and release rate). In vivo studies (pharmacodynamic study and biochemical evaluation) showed considerable improvement in blood pressure, the profile of the lipid, oxidant stress biomarkers, and cardiac markers. Histopathological studies revealed the superiority of S2 wafer in the protection of heart tissues over Carvid®. The results achieved indicate that nano-spanlastic-based wafer offers a promising improving trans-buccal carvedilol delivery system.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Abd El Azim H, Nafee N, Ramadan A, Khalafallah N. Liposomal buccal mucoadhesive film for improved delivery and permeation of water-soluble vitamins. Int J Pharm. Elsevier B.V. 2015;488:78–85. https://doi.org/10.1016/j.ijpharm.2015.04.052.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Gilhotra RM, Ikram M, Srivastava S, Gilhotra N. A clinical perspective on mucoadhesive buccal drug delivery systems. J Biomed Res. 2014;28:81–97 Available from: http://www.jbr-pub.org.cn/ch/reader/view_abstract.aspx?file_no=JBR140204&flag=1.

    PubMed  Google Scholar 

  3. 3.

    Ayensu I, Mitchell JC, Boateng JS. Development and physico-mechanical characterisation of lyophilised chitosan wafers as potential protein drug delivery systems via the buccal mucosa. Colloids Surf B Biointerfaces. 2012;91:258–65.

    CAS  Article  Google Scholar 

  4. 4.

    Abd-Elbary A, Makky AMA, Tadros MI, Alaa-Eldin AA. Laminated sponges as challenging solid hydrophilic matrices for the buccal delivery of carvedilol microemulsion systems: development and proof of concept via mucoadhesion and pharmacokinetic assessments in healthy human volunteers. Eur J Pharm Sci Elsevier B.V. 2016;82:31–44. https://doi.org/10.1016/j.ejps.2015.11.006.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Muzzalupo R, Tavano L. Niosomal drug delivery for transdermal targeting: recent advances. Res Rep Transdermal Drug Deliv. 2015;23.

  6. 6.

    Al-mahallawi AM, Khowessah OM, Shoukri RA. Enhanced non invasive trans-tympanic delivery of ciprofloxacin through encapsulation into nano-spanlastic vesicles: fabrication, in-vitro characterization, and comparative ex-vivo permeation studies. Int J Pharm. Elsevier B.V. 2017;522:157–64. https://doi.org/10.1016/j.ijpharm.2017.03.005.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Duodenum-triggered delivery of pravastatin sodium via enteric surface-coated nanovesicular spanlastic dispersions: development, characterization and pharmacokinetic assessments. Int J Pharm Elsevier B.V. 2015;483:77–88. https://doi.org/10.1016/j.ijpharm.2015.02.012.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Kakkar S, Kaur IP. Spanlastics-a novel nanovesicular carrier system for ocular delivery. Int J Pharm. Elsevier B.V. 2011;413:202–10. https://doi.org/10.1016/j.ijpharm.2011.04.027.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Boateng JS, Matthews KH, Auffret AD, Humphrey MJ, Stevens HN, Eccleston GM. In vitro drug release studies of polymeric freeze-dried wafers and solvent-cast films using paracetamol as a model soluble drug. Int J Pharm. 2009;378:66–72.

    CAS  Article  Google Scholar 

  10. 10.

    Mura P, Mennini N, Kosalec I, Furlanetto S, Orlandini S, Jug M. Amidated pectin-based wafers for econazole buccal delivery: formulation optimization and antimicrobial efficacy estimation. Carbohydr Polym. Elsevier Ltd. 2015;121:231–40. https://doi.org/10.1016/j.carbpol.2014.11.065.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    von Mollendorff E, Reiff K, Neugebauer G. Pharmacokinetics and bioavailability of carvedilol, a vasodilating beta-blocker. Eur J Clin Pharmacol Germany. 1987;33:511–3.

    Article  Google Scholar 

  12. 12.

    Al-mahallawi AM, Khowessah OM, Shoukri RA. Nano-transfersomal cipro fl oxacin loaded vesicles for non-invasive trans-tympanic ototopical delivery : in-vitro optimization , ex-vivo permeation studies , and in-vivo assessment. Elsevier BV. Elsevier B.V. 2014;472:304–14. https://doi.org/10.1016/j.ijpharm.2014.06.041.

    CAS  Article  Google Scholar 

  13. 13.

    Aboelwafa AA, El-Setouhy DA, Elmeshad AN. Comparative study on the effects of some polyoxyethylene alkyl ether and sorbitan fatty acid ester surfactants on the performance of transdermal carvedilol proniosomal gel using experimental design. AAPS PharmSciTech. 2010;11:1591–602.

    CAS  Article  Google Scholar 

  14. 14.

    Abdelrahman FE, Elsayed I, Gad MK, Elshafeey AH, Mohamed MI. Response surface optimization, ex vivo and in vivo investigation of nasal spanlastics for bioavailability enhancement and brain targeting of risperidone. Int J Pharm. Elsevier B.V. 2017;530:1–11. https://doi.org/10.1016/j.ijpharm.2017.07.050.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Dongare TD, Bhalekar MRGSV. Formulation optimization and pharmacokinetics of tinidazole crystallo-co-agglomerates. MOJ Bioequivalence Bioavailab. 2017;3:123–9.

    Google Scholar 

  16. 16.

    Teja SPS, Damodharan N. 23 full factorial model for particle size optimization of methotrexate loaded chitosan nanocarriers: a design of experiments (DoE) approach. Biomed Res Int Hindawi. 2018;2018.

  17. 17.

    Hammad RW, Sanad RAB, Abdelmalk NS, Aziz RL, Torad FA. Intranasal surface-modified mosapride citrate-loaded nanostructured lipid carriers (MOS-SMNLCs) for treatment of reflux diseases: in vitro optimization, pharmacodynamics, and pharmacokinetic studies. AAPS PharmSciTech AAPS PharmSciTech. 2018;19:3791–808.

    CAS  Article  Google Scholar 

  18. 18.

    Avula PR, Veesam H. Influence of dependent variables on granule formulation using factorial design : microwave irradiation as one of the factor. 2013;2:115–8.

  19. 19.

    Aboud HM, Ali AA, El-Menshawe SF, Elbary AA. Nanotransfersomes of carvedilol for intranasal delivery: formulation, characterization and in vivo evaluation. Drug Deliv. Informa Healthcare USA, Inc. 2016;23:2471–81. https://doi.org/10.3109/10717544.2015.1013587.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    El-mahrouk GM, El-gazayerly ON, Aboelwafa AA, Taha MS. Chitosan lactate wafer as a platform for the buccal delivery of tizanidine HCl : in vitro and in vivo performance. Elsevier BV. Elsevier B.V. 2014;467:100–12. https://doi.org/10.1016/j.ijpharm.2014.03.049.

    CAS  Article  Google Scholar 

  21. 21.

    Hassan N, Ali M, Ali J. Development and evaluation of novel buccoadhesive wafers of nimodipine for treatment of hypertension. Drug Deliv. 2010;17:59–67.

    CAS  Article  Google Scholar 

  22. 22.

    Timur SS, Yüksel S, Akca G, Şenel S. Localized drug delivery with mono and bilayered mucoadhesive films and wafers for oral mucosal infections. Int J Pharm. Elsevier B.V. 2019;559:102–12. https://doi.org/10.1016/j.ijpharm.2019.01.029.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Buhl SN, Jackson KY. Optimal conditions and comparison of lactate dehydrogenase catalysis of the lactate to pyruvate and pyruvate to lactate reactions in human serum at 25, 30, and 37??C. Clin Chem. 1978;24:828–31.

    CAS  Article  Google Scholar 

  24. 24.

    Szasz G, Gruber W, Bernt E. Creatine kinase in serum: I. determination of optimum reaction conditions. Clin Chem. 1976;22:650–6.

    CAS  Article  Google Scholar 

  25. 25.

    Wang CC, Huang YJ, Chen LG, Lee LT, Yang LL. Inducible nitric oxide synthase inhibitors of Chinese herbs III. Rheum palmatum. Planta Med. 2002;68:869–74.

    CAS  Article  Google Scholar 

  26. 26.

    Vrablic AS, Albright CD, Craciunescu CN, Salganik RI, Zeisel SH. Altered mitochondrial function and overgeneration of reactive oxygen species precede the induction of apoptosis by 1-O-octadecyl-2-methyl-rac-glycero-3-phosphocholine in p53-defective hepatocytes. FASEB J. 2001;15:1739–44.

    CAS  Article  Google Scholar 

  27. 27.

    Aboud HM, Hassan AH, Ali AA, Abdel-Razik ARH. Novel in situ gelling vaginal sponges of sildenafil citrate-based cubosomes for uterine targeting. Drug Deliv. Informa Healthcare USA, Inc. 2018;25:1328–39. https://doi.org/10.1080/10717544.2018.1477858.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Elmeshad AN, Mohsen AM. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. 2014;7544:1–9.

  29. 29.

    Subedi G, Shrestha AK, Shakya S. Study of effect of different factors in formulation of micro and nanospheres with solvent evaporation technique. Open Pharm Sci J. 2016;3:182–95.

    Article  Google Scholar 

  30. 30.

    Mahmoud MO, Aboud HM, Hassan AH, Ali AA, Johnston TP. Transdermal delivery of atorvastatin calcium from novel nanovesicular systems using polyethylene glycol fatty acid esters: ameliorated effect without liver toxicity in poloxamer 407-induced hyperlipidemic rats. J Control Release. Elsevier B.V. 2017;254:10–22. https://doi.org/10.1016/j.jconrel.2017.03.039.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Shamma RN, Sayed S, Sabry NA, El-Samanoudy SI. Enhanced skin targeting of retinoic acid spanlastics: in vitro characterization and clinical evaluation in acne patients. J Liposome Res. 2019;2104.

  32. 32.

    El Menshawe SF, Nafady MM, Aboud HM, Kharshoum RM, Elkelawy AMMH, Hamad DS. Transdermal delivery of fluvastatin sodium via tailored spanlastic nanovesicles: mitigated Freund’s adjuvant-induced rheumatoid arthritis in rats through suppressing p38 MAPK signaling pathway. Drug Deliv. Taylor & Francis. 2019;26:1140–54. https://doi.org/10.1080/10717544.2019.1686087.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Bnyan R, Khan I, Ehtezazi T, Saleem I, Gordon S, O’Neill F, et al. Surfactant effects on lipid-based vesicles properties. J Pharm Sci. American Pharmacists Association. 2018;107:1237–46. https://doi.org/10.1016/j.xphs.2018.01.005.

  34. 34.

    Al Shuwaili AH, Rasool BKA, Abdulrasool AA. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. Eur J Pharm Biopharm. Elsevier B.V. 2016;102:101–14. https://doi.org/10.1016/j.ejpb.2016.02.013, 2016.

  35. 35.

    Vysloužil J, Doležel P, Kejdušová M, Mašková E, Mašek J, Lukáč R, et al. Influence of different formulations and process parameters during the preparation of drug-loaded PLGA microspheres evaluated by multivariate data analysis. Acta Pharma. 2014;64:403–17.

    Article  Google Scholar 

  36. 36.

    Abdellatif AAH, El-Telbany DFA, Zayed G, Al-Sawahli MM. Hydrogel containing PEG-coated fluconazole nanoparticles with enhanced solubility and antifungal activity. J Pharm Innov. 2019;14:112–22.

    Article  Google Scholar 

  37. 37.

    Salama HA, Mahmoud AA, Kamel AO, Abdel Hady M, Awad GAS. Brain delivery of olanzapine by intranasal administration of transfersomal vesicles. J Liposome Res. 2012;22:336–45.

    CAS  Article  Google Scholar 

  38. 38.

    Shamma RN, Elsayed I. Transfersomal lyophilized gel of buspirone HCl : formulation , evaluation and statistical optimization. 2013;2104.

  39. 39.

    Tapas Kumar Pal, Usashi Ghosh MP. International Journal of Pharmaceutical and comparative bioequivalence study of different brands of telmisartan tablets marketed in India by dissolution modeling and quality control tests. 6084.

  40. 40.

    Darwish MK, Elmeshad AN. Buccal mucoadhesive tablets of flurbiprofen: characterization and optimization. Drug Discov Ther. 2009;3:181–9.

    CAS  PubMed  Google Scholar 

  41. 41.

    Hazzah HA, Farid RM, Nasra MMA, El-Massik MA, Abdallah OY. Lyophilized sponges loaded with curcumin solid lipid nanoparticles for buccal delivery: development and characterization. Int J Pharm. Elsevier B.V.; 2015;492:248–57. https://doi.org/10.1016/j.ijpharm.2015.06.022.

  42. 42.

    Rencuzogullari N, Erdogan S. Oral administration of lycopene reverses cadmium-suppressed body weight loss and lipid peroxidation in rats. Biol Trace Elem Res. 2007;118:175–83.

    CAS  Article  Google Scholar 

  43. 43.

    Khan SA, Choudhary R, Singh A, Bodakhe SH. Hypertension potentiates cataractogenesis in rat eye through modulation of oxidative stress and electrolyte homeostasis. J Curr Ophthalmol. Elsevier Ltd; 2016;28:123–30. https://doi.org/10.1016/j.joco.2016.05.001, 2016.

  44. 44.

    Kukongviriyapan U, Pannangpetch P, Kukongviriyapan V, Donpunha W, Sompamit K, Surawattanawan P. Curcumin protects against cadmium-induced vascular dysfunction, hypertension and tissue cadmium accumulation in mice. Nutrients. 2014;6:1194–208.

    Article  Google Scholar 

  45. 45.

    Washington B, Williams S, Armstrong P, Mtshali C, Robinson JT, Myles EL. Cadmium toxicity on arterioles vascular smooth muscle cells of spontaneously hypertensive rats. Int J Environ Res Public Health. 2006;3:323–8.

    CAS  Article  Google Scholar 

  46. 46.

    Yoopan N, Watcharasit P, Wongsawatkul O, Piyachaturawat P, Satayavivad J. Attenuation of eNOS expression in cadmium-induced hypertensive rats. Toxicol Lett. 2008;176:157–61.

    CAS  Article  Google Scholar 

  47. 47.

    Sabeena Farvin KH, Anandan R, Kumar SHS, Shiny KS, Sankar TV, Thankappan TK. Effect of squalene on tissue defense system in isoproterenol-induced myocardial infarction in rats. Pharmacol Res. 2004;50:231–6.

    CAS  Article  Google Scholar 

  48. 48.

    Ariyanti R, Besral B. Dyslipidemia associated with hypertension increases the risks for coronary heart disease: a case-control study in Harapan Kita Hospital, National Cardiovascular Center, Jakarta. J Lipids. 2019;2019:1–6.

    Article  Google Scholar 

  49. 49.

    Feuerstein GZ, Ruffolo RR. Carvedilol, a novel vasodilating beta-blocker with the potential for cardiovascular organ protection. Eur Heart J. 1996;17:24–9.

    CAS  Article  Google Scholar 

  50. 50.

    Messner B, Bernhard D. Cadmium and cardiovascular diseases: cell biology, pathophysiology, and epidemiological relevance. BioMetals. 2010;23:811–22.

    CAS  Article  Google Scholar 

  51. 51.

    Haidry MT. Hepatoprotective and antioxidative effects of Terminalia Arjuna against cadmium provoked toxicity in albino rats (Ratus Norvigicus). Biochem Pharmacol Open Access. 2014;03:10–3.

    Article  Google Scholar 

  52. 52.

    Nair AR, DeGheselle O, Smeets K, Van Kerkhove E, Cuypers A. Cadmium-induced pathologies: where is the oxidative balance lost (or not)? Int J Mol Sci. 2013;14:6116–43.

    CAS  Article  Google Scholar 

  53. 53.

    Donpunha W, Kukongviriyapan U, Sompamit K, Pakdeechote P, Kukongviriyapan V, Pannangpetch P. Protective effect of ascorbic acid on cadmium-induced hypertension and vascular dysfunction in mice. BioMetals. 2011;24:105–15.

    CAS  Article  Google Scholar 

  54. 54.

    Skoczynska A, Martynowicz H. The impact of subchronic cadmium poisoning on the vascular effect of nitric oxide in rats. Hum Exp Toxicol. 2005;24:353–61.

    CAS  Article  Google Scholar 

  55. 55.

    Aggarwal A, Mehta S, Gupta D, Sheikh S, Pallagatti S, Singh R, et al. Clinical & immunological erythematosus patients characteristics in systemic lupus Maryam. J Dent Educ. 2012;76:1532–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23144490.

    Article  Google Scholar 

  56. 56.

    Stafylas PC. Carvedilol in hypertension treatment. 2008;4:23–30.

  57. 57.

    Yue TL, Ruffolo RR, Feuerstein G. Antioxidant action of carvedilol: a potential role in treatment of heart failure. Heart Fail Rev. 1999;4:39–51.

    CAS  Article  Google Scholar 

  58. 58.

    Mohsen AM, Asfour MH, Salama AAA. Improved hepatoprotective activity of silymarin via encapsulation in the novel vesicular nanosystem bilosomes. Drug Dev Ind Pharm. Informa Healthcare USA, Inc; 2017;43:2043–54. https://doi.org/10.1080/03639045.2017.1361968.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shadeed Gad.

Ethics declarations

Conflict of interest

The authors declare that they have conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 850 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sallam, N.M., Sanad, R.A.B., Ahmed, M.M. et al. Impact of the mucoadhesive lyophilized wafer loaded with novel carvedilol nano-spanlastics on biochemical markers in the heart of spontaneously hypertensive rat models. Drug Deliv. and Transl. Res. (2020). https://doi.org/10.1007/s13346-020-00814-4

Download citation

Keywords

  • Span 60
  • Elastic vesicles
  • Ethanol injection
  • Buccal mucosa
  • Permeation
  • Edge activator