Levofloxacin nanoemulsion gel has a powerful healing effect on infected wound in streptozotocin-induced diabetic rats

Abstract

The aim of this study was to develop a novel oil-in-water (o/w) nanoemulsion gel containing levofloxacin for enhanced topical efficacy. Average particle size of sesame oil nanoemulsion without (SONE) and containing levofloxacin (SONEL) was found as 25.2 and 26.3 nm, respectively. Results from scratch test showed that SONEL had better proliferation effect in comparison with negative control. Treated animals with SONEL showed significant reduction in period of epithelialization, wound contraction, and number of inflammatory cells among all groups. Also, SONEL-treated group had the greatest collagen synthesis. Immunohistochemical analysis showed high intensity of CD31 and TGF-β at wound site of treatment groups with SONEL on day 12 post-treatment (P < 0.05). Skin irritation test demonstrated safety of SONEL gel for skin topical application. In conclusion, our studies suggest that SONEL could be an effective formulation for treatment of diabetic wound infection by controlling infection and improving the healing process.

.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7
Fig. 8
Fig. 9

Abbreviations

SONE:

Sesame oil nanoemulsion

SONEL:

Sesame oil nanoemulsion containing levofloxacin

D-NC:

Diabetic negative control group

ND-NC:

Non-diabetic negative control group

SSD:

Silver sulfadiazine

CD31:

Cluster of differentiation 31

TGF-β:

Transforming growth factor beta

References

  1. 1.

    Egede L E, Hull B J, Williams J S, Cowie C, Casagrande S, Menke A, et al. Infections associated with diabetes. Diabetes in America, 3rd edn. National Institutes of Health, NIH Pub. 2017; 30-31.

  2. 2.

    Pitocco D, Spanu T, Di Leo M, Vitiello R, Rizzi A, Tartaglione L, et al. Diabetic foot infections: a comprehensive overview. Eur Rev Med Pharmacol Sci. 2019;23:26–37.

    CAS  PubMed  Google Scholar 

  3. 3.

    Maharani B, Jafrin AL, Bai KV, Sivagnanam G. Levofloxacin-induced tactile hallucination and acute anxiety reaction. Indian J Pharm. 2019;51:123–5.

    CAS  Google Scholar 

  4. 4.

    Gill G, Chhabra M, Chawla S. Levofloxacin induced desquamation: a rare case report. Curr Drug Saf. 2019.

  5. 5.

    Raffaelli V, Cantoni G, Nucera G, Marino P. Levofloxacin-induced visual hallucinations: a case report and review of the literature. J Health Soc Sci. 2018;3:85–9.

    Google Scholar 

  6. 6.

    Idrees N, Almeqdadi M, Balakrishnan VS, Jaber BL. Hemodialysis for treatment of levofloxacin-induced neurotoxicity. Hemodial Int. 2019;23:E40–5.

    PubMed  Google Scholar 

  7. 7.

    Cheng YH, Chang YF, Ko YC, Liu CJL. Sustained release of levofloxacin from thermosensitive chitosan-based hydrogel for the treatment of postoperative endophthalmitis. J Biomed Mater Res B Appl Biomater. 2019.

  8. 8.

    Valizadeh A, Shirzad M, Esmaeili F, Amani A. Increased antibacterial activity of cinnamon oil microemulsion in comparison with cinnamon oil bulk and nanoemulsion. Nanomed Res J. 2018;3:37–43.

    CAS  Google Scholar 

  9. 9.

    Najafi-taher R, Ghaemi B, Kharrazi S, Rasoulikoohi S, Amani A. Correction to: Promising antibacterial effects of silver nanoparticle-loaded tea tree oil nanoemulsion: a synergistic combination against resistance threat. AAPS PharmSciTech. 2018;19:3322–2.

  10. 10.

    Ghiasi Z, Esmaeli F, Aghajani M, Ghazi-Khansari M, Faramarzi MA, Amani A. Enhancing analgesic and anti-inflammatory effects of capsaicin when loaded into olive oil nanoemulsion: an in vivo study. Int J Pharm. 2019;559:341–7.

    CAS  PubMed  Google Scholar 

  11. 11.

    Azami SJ, Amani A, Keshavarz H, Najafi-Taher R, Mohebali M, Faramarzi MA, et al. Nanoemulsion of atovaquone as a promising approach for treatment of acute and chronic toxoplasmosis. Eur J Pharm Sci. 2018;117:138–46.

    CAS  PubMed  Google Scholar 

  12. 12.

    Afroz M, Zihad SNK, Uddin SJ, Rouf R, Rahman MS, Islam MT, et al. A systematic review on antioxidant and antiinflammatory activity of Sesame (Sesamum indicum L.) oil and further confirmation of antiinflammatory activity by chemical profiling and molecular docking. Phytother Res. 2019.

  13. 13.

    Valizadeh A, Shirzad M, Pourmand MR, Farahmandfar M, Sereshti H, Amani A. Preparation and comparison of effects of different herbal oil ointments as wound-healing agents. Cells Tissues Organs. 2019:1–10.

  14. 14.

    Pathak N, Bhaduri A, Rai AK. Sesame: bioactive compounds and health benefits. Bioact Mol Food. 2019:181–200.

  15. 15.

    Toorani MR, Farhoosh R, Golmakani M, Sharif A. Antioxidant activity and mechanism of action of sesamol in triacylglycerols and fatty acid methyl esters of sesame, olive, and canola oils. LWT. 2019;103:271–8.

    CAS  Google Scholar 

  16. 16.

    Shirzad M, Hamedi J, Motevaseli E, Modarressi MH. Anti-elastase and anti-collagenase potential of Lactobacilli exopolysaccharides on human fibroblast. Artif Cells Nanomed Biotechnol. 2018:1–11.

  17. 17.

    Shirzad M, Hamedi J, Motevaseli E, Modarressi MH. Anti-elastase and anti-collagenase potential of Lactobacilli exopolysaccharides on human fibroblast. Artif Cells Nanomed Biotechnol. 2018;46:1051–61.

    CAS  PubMed  Google Scholar 

  18. 18.

    Draize JH, Woodard G, Calvery HO. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther. 1944;82:377–90.

    CAS  Google Scholar 

  19. 19.

    Patel PA, Patil SC, Kalaria DR, Kalia YN, Patravale VB. Comparative in vitro and in vivo evaluation of lipid based nanocarriers of Huperzine A. Int J Pharm. 2013;446:16–23.

    CAS  PubMed  Google Scholar 

  20. 20.

    Mack JA, Feldman RJ, Itano N, Kimata K, Lauer M, Hascall VC, et al. Enhanced inflammation and accelerated wound closure following tetraphorbol ester application or full-thickness wounding in mice lacking hyaluronan synthases Has1 and Has3. J Investig Dermatol. 2012;132:198–207.

    CAS  PubMed  Google Scholar 

  21. 21.

    Hagen M, Baker M. Skin penetration and tissue permeation after topical administration of diclofenac. Curr Med Res Opin. 2017;33:1623–34.

    CAS  PubMed  Google Scholar 

  22. 22.

    Klang V, Schwarz JC, Valenta C. Nanoemulsions in dermal drug delivery. In: Percutaneous penetration enhancers chemical methods in penetration enhancement: Springer; 2015. p. 255–66.

  23. 23.

    Sohi S, Smith C. Effect of fetal bovine serum on the growth and survival of insect cell cultures. Can J Zool. 1970;48:427–32.

    CAS  PubMed  Google Scholar 

  24. 24.

    Kiran K, Asad M. Wound healing activity of Sesamum indicum L seed and oil in rats. 2008.

  25. 25.

    Azzi A, Gysin R, KempnÁ P, Munteanu A, Negis Y, Villacorta L, et al. Vitamin E mediates cell signaling and regulation of gene expression. Ann N Y Acad Sci. 2004;1031:86–95.

    CAS  PubMed  Google Scholar 

  26. 26.

    Musalmah M, Fairuz AH, Gapor MT, Wan Ngah WZ. Effect of vitamin E on plasma malondialdehyde, antioxidant enzyme levels and the rates of wound closures during wound healing in normal and diabetic rats. Asia Pac J Clin Nutr. 2002;11:S448–S51.

    CAS  PubMed  Google Scholar 

  27. 27.

    Khorrami S, Saeed Daneshmandi GM. Sesame seeds essential oil and sesamol modulate the pro-inflammatory function of macrophages and dendritic cells and promote Th2 response. Med J Islam Repub Iran. 2018;32:98.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Kang M-H, Naito M, Tsujihara N, Osawa T. Sesamolin inhibits lipid peroxidation in rat liver and kidney. J Nutr. 1998;128:1018–22.

    CAS  PubMed  Google Scholar 

  29. 29.

    Kanu PJ, Bahsoon JZ, Kanu JB, Kandeh J. Nutraceutical importance of sesame seed and oil: a review of the contribution of their lignans. Sierra Leone J Biomed Res. 2010;2:4–16.

    Google Scholar 

  30. 30.

    Hirata F. Hypocholesterolemic effect of sesame lignan in humans. Atherosclerosis. 1996;122:135–6.

    CAS  PubMed  Google Scholar 

  31. 31.

    Shimizu S, Akimoto K, Shinmen Y, Kawashima H, Sugano M, Yamada H. Sesamin is a potent and specific inhibitor of Δ5 desaturase in polyunsaturated fatty acid biosynthesis. Lipids. 1991;26:512–6.

    CAS  PubMed  Google Scholar 

  32. 32.

    Hsu D-Z, Su S-B, Chien S-P, Chiang P-J, Li Y-H, Lo Y-J, et al. Effect of sesame oil on oxidative-stress-associated renal injury in endotoxemic rats: involvement of nitric oxide and proinflammatory cytokines. Shock. 2005;24:276–80.

    CAS  PubMed  Google Scholar 

  33. 33.

    Chen X, Ying X, Chen L, Zhang W, Zhang Y. Protective effects of sesamin on liver fibrosis through antioxidative and anti-inflammatory activities in rats. Immunopharmacol Immunotoxicol. 2015;37:465–72.

    CAS  PubMed  Google Scholar 

  34. 34.

    Guo SA, Di Pietro LA. Factors affecting wound healing. J Dent Res. 2010;89:219–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Tehrani S, Lotfi P, Tehrani S, Jangholi E, Aryan H, Aidun A. Healing effect of sesame ointment on second-degree burn wound in rats. Galen Med J. 2016;5:56–62.

    Google Scholar 

  36. 36.

    Yin H, Chen C-Y, Liu Y-W, Tan Y-J, Deng Z-L, Yang F, et al. Synechococcus elongatus PCC7942 secretes extracellular vesicles to accelerate cutaneous wound healing by promoting angiogenesis. Theranostics. 2019;9:2678–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Early M, Schroeder WG, Unnithan R, Gilchrist JM, Muller WA, Schenkel A. Differential effect of Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1) on leukocyte infiltration during contact hypersensitivity responses. PeerJ. 2017;5:e3555.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Luzuriaga J, Pastor-Alonso O, Encinas JM, Unda F, Ibarretxe G, Pineda JR. Human dental pulp stem cells grown in neurogenic media differentiate into endothelial cells and promote neovasculogenesis in the mouse brain. Front Physiol. 2019;10:347.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Burns A, Brown E, Gagen D, Williams G, Li Z, Smith C. Role of CD18 and CD31 in corneal wound healing and neutrophil migration. Invest Ophthalmol Vis Sci. 2005;46:2643–3.

  40. 40.

    Honnegowda TM, Kumar P, Udupa E, Kumar S, Kumar U, Rao P. Role of angiogenesis and angiogenic factors in acute and chronic wound healing. Plast Aesthet Res. 2015;2:243–9.

    Google Scholar 

  41. 41.

    Clark RA. The molecular and cellular biology of wound repair: Springer Science & Business Media; 2013.

  42. 42.

    Riedel K, Riedel F, Goessler UR, Germann G, Sauerbier M. TGF-β antisense therapy increases angiogenic potential in human keratinocytes in vitro. Arch Med Res. 2007;38:45–51.

    CAS  PubMed  Google Scholar 

  43. 43.

    Brunner G, Blakytny R. Extracellular regulation of TGF-β activity in wound repair: growth factor latency as a sensor mechanism for injury. Thromb Haemost. 2004;92:253–61.

    CAS  PubMed  Google Scholar 

  44. 44.

    Verrecchia F, Mauviel A. Transforming growth factor-β and fibrosis. World J Gastroenterol. 2007;13:3056–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Steed DL. The role of growth factors in wound healing. Surg Clin N Am. 1997;77:575–86.

    CAS  PubMed  Google Scholar 

  46. 46.

    Xu X, Zheng L, Yuan Q, Zhen G, Crane JL, Zhou X, et al. Transforming growth factor-β in stem cells and tissue homeostasis. Bone Res. 2018;6:2.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Westergren-Thorsson G, Hernnäs J, Särnstrand B, Oldberg A, Heinegård D, Malmström A. Altered expression of small proteoglycans, collagen, and transforming growth factor-beta 1 in developing bleomycin-induced pulmonary fibrosis in rats. J Clin Invest. 1993;92:632–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Chithra P, Sajithlal G, Chandrakasan G. Influence of Aloe vera on the healing of dermal wounds in diabetic rats. J Ethnopharmacol. 1998;59:195–201.

    CAS  PubMed  Google Scholar 

  49. 49.

    Valizadeh A, Shirzad M, Pourmand MR, Farahmandfar M, Sereshti H, Amani A. Preparation and comparison of effects of different herbal oil ointments as wound-healing agents. Cells Tissues Organs. 2019;207:177–86.

    CAS  PubMed  Google Scholar 

  50. 50.

    OECD. Test No. 405: Acute Eye Irritation/Corrosion. Paris: OECD Publishing; 2002.

    Google Scholar 

  51. 51.

    Lee M, Hwang J-H, Lim K-M. Alternatives to in vivo Draize rabbit eye and skin irritation tests with a focus on 3D reconstructed human cornea-like epithelium and epidermis models. Toxicol Res. 2017;33:191–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Clark L, Bezwada P, Hosoi K, Ikuse T, Adams S, Schultz GS, et al. Comprehensive evaluation of ocular toxicity of topical levofloxacin in rabbit and primate models. J Toxicol Cutan Ocul Toxicol. 2005;23:1–18.

    Google Scholar 

  53. 53.

    Najafi-Taher R, Ghaemi B, Amani A. Delivery of adapalene using a novel topical gel based on tea tree oil nano-emulsion: permeation, antibacterial and safety assessments. Eur J Pharm Sci. 2018;120:142–51.

    CAS  PubMed  Google Scholar 

  54. 54.

    Zheng Y, Ouyang W-Q, Wei Y-P, Syed SF, Hao C-S, Wang B-Z, et al. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study. Int J Nanomedicine. 2016;11:5971.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by Tehran University of Medical Science and Health Services grant no. 96-01-87-34142.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amir Amani.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valizadeh, A., Shirzad, M., Pourmand, M.R. et al. Levofloxacin nanoemulsion gel has a powerful healing effect on infected wound in streptozotocin-induced diabetic rats. Drug Deliv. and Transl. Res. 11, 292–304 (2021). https://doi.org/10.1007/s13346-020-00794-5

Download citation

Keywords

  • Sesame oil nanoemulsion
  • Wound healing
  • Topical gel
  • Levofloxacin