Skip to main content

Advertisement

Log in

Protective effect of surface-modified berberine nanoparticles against LPS-induced neurodegenerative changes: a preclinical study

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Berberine (BBR) exerts documented protection against neurodegenerative disorders. However, data on the effect of nano-encapsulation on the neuroprotective effect of BBR are lacking. We investigated the effect of BBR loading into chitosan (CS) nanoparticles (NPs) and their surface modification with Tween 80 (T80), polyethylene glycol 4000 (PEG), and miltefosine (MFS) against lipopolysaccharide (LPS)-induced neurodegenerative changes in addition to hepatotoxicity in rats. BBR-NPs were prepared by ionic gelation and characterized for morphology by transmission electron microscopy (TEM), colloidal properties, and entrapment efficiency (EE%). The neuroprotective and hepatoprotective effects of a 14-day pretreatment with four BBR-NPs formulations (4 mg/kg BBR/day) by intraperitoneal (i.p.) injection were challenged by a single i.p. 4 mg/kg dose of LPS on the fifteenth day. Neuroprotective efficacy and potential toxicity of BBR-NPs relative to BBR solution were assessed biochemically and histopathologically. One-way ANOVA followed by Tukey’s comparison test was used for statistical analysis. CS nano-encapsulation and surface modification of BBR-NPs altered the neuroprotective and hepatoprotective effects of BBR depending on the physicochemical and/or biological effects of BBR, CS, coating materials, and NP-related features. Similar to the prophylactic and treatment efficacy of NPs for brain delivery, safety of these nanostructures and their individual formulation components warrants due research attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AChE:

Acetylcholine esterase

Aβ 1-42:

Amyloid beta 1-42

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

CS:

Chitosan

GSH:

Reduced glutathione

LPS:

Lipopolysaccharide

MFS:

Miltefosine

NO:

Total nitric oxide

NPs:

Nanoparticles

PEG:

Polyethylene glycol 4000

TBARS:

Thiobarbituric acid-reactive substances

TEM:

Transmission electron microscopy

TNF-α:

Tumor necrosis factor-alpha

T80:

Tween 80

References

  1. Kulkarni SK, Dhir A. Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders. Phytother Res: PTR. 2010;24(3):317–24. https://doi.org/10.1002/ptr.2968.

    Article  CAS  PubMed  Google Scholar 

  2. Poupot R, Bergozza D, Fruchon S. Nanoparticle-based strategies to treat neuro-inflammation. Materials. 2018;11(2). https://doi.org/10.3390/ma11020270.

  3. Yadav M, Parle M, Sharma N, Dhingra S, Raina N, Jindal DK. Brain targeted oral delivery of doxycycline hydrochloride encapsulated tween 80 coated chitosan nanoparticles against ketamine induced psychosis: behavioral, biochemical, neurochemical and histological alterations in mice. Drug delivery. 2017;24(1):1429–40. https://doi.org/10.1080/10717544.2017.1377315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ishak RAH, Mostafa NM, Kamel AO. Stealth lipid polymer hybrid nanoparticles loaded with rutin for effective brain delivery—comparative study with the gold standard (tween 80): optimization, characterization and biodistribution. Drug delivery. 2017;24(1):1874–90. https://doi.org/10.1080/10717544.2017.1410263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McNeeley KM, Karathanasis E, Annapragada AV, Bellamkonda RV. Masking and triggered unmasking of targeting ligands on nanocarriers to improve drug delivery to brain tumors. Biomaterials. 2009;30(23–24):3986–95. https://doi.org/10.1016/j.biomaterials.2009.04.012.

    Article  CAS  PubMed  Google Scholar 

  6. Lohan S, Raza K, Mehta SK, Bhatti GK, Saini S, Singh B. Anti-Alzheimer's potential of berberine using surface decorated multi-walled carbon nanotubes: a preclinical evidence. Int J Pharm. 2017;530(1–2):263–78. https://doi.org/10.1016/j.ijpharm.2017.07.080.

    Article  CAS  PubMed  Google Scholar 

  7. Mirhadi E, Rezaee M, Malaekeh-Nikouei B. Nano strategies for berberine delivery, a natural alkaloid of berberis. Biomed Pharmacother. 2018;104:465–73. https://doi.org/10.1016/j.biopha.2018.05.067.

    Article  CAS  PubMed  Google Scholar 

  8. Yu F, Ao M, Zheng X, Li N, Xia J, Li Y, et al. PEG-lipid-PLGA hybrid nanoparticles loaded with berberine-phospholipid complex to facilitate the oral delivery efficiency. Drug delivery. 2017;24(1):825–33. https://doi.org/10.1080/10717544.2017.1321062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sahibzada MUK, Sadiq A, Faidah HS, Khurram M, Amin MU, Haseeb A, et al. Berberine nanoparticles with enhanced in vitro bioavailability: characterization and antimicrobial activity. Drug Des Devel Ther. 2018;12:303–12. https://doi.org/10.2147/DDDT.S156123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Wen B, Yu H, Ding D, Zhang J, Zhang Y, et al. Berberine hydrochloride-loaded chitosan nanoparticles effectively targets and suppresses human nasopharyngeal carcinoma. J Biomed Nanotechnol. 2018;14(8):1486–95. https://doi.org/10.1166/jbn.2018.2596.

    Article  CAS  PubMed  Google Scholar 

  11. Xie D, Xu Y, Jing W, Juxiang Z, Hailun L, Yu H, et al. Berberine nanoparticles protects tubular epithelial cells from renal ischemia-reperfusion injury. Oncotarget. 2017;8(15):24154–62. https://doi.org/10.18632/oncotarget.16530.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sahin A, Yoyen-Ermis D, Caban-Toktas S, Horzum U, Aktas Y, Couvreur P, et al. Evaluation of brain-targeted chitosan nanoparticles through blood-brain barrier cerebral microvessel endothelial cells. J Microencapsul. 2017;34(7):659–66. https://doi.org/10.1080/02652048.2017.1375039.

    Article  CAS  PubMed  Google Scholar 

  13. Roy SL, Atkins JT, Gennuso R, Kofos D, Sriram RR, Dorlo TP, et al. Assessment of blood-brain barrier penetration of miltefosine used to treat a fatal case of granulomatous amebic encephalitis possibly caused by an unusual Balamuthia mandrillaris strain. Parasitol Res. 2015;114(12):4431–9. https://doi.org/10.1007/s00436-015-4684-8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhou Y, Liu SQ, Peng H, Yu L, He B, Zhao Q. In vivo anti-apoptosis activity of novel berberine-loaded chitosan nanoparticles effectively ameliorates osteoarthritis. Int Immunopharmacol. 2015;28(1):34–43. https://doi.org/10.1016/j.intimp.2015.05.014.

    Article  CAS  PubMed  Google Scholar 

  15. Tahara K, Miyazaki Y, Kawashima Y, Kreuter J, Yamamoto H. Brain targeting with surface-modified poly(D,L-lactic-co-glycolic acid) nanoparticles delivered via carotid artery administration. Eur J Pharm Biopharm. 2011;77(1):84–8. https://doi.org/10.1016/j.ejpb.2010.11.002.

    Article  CAS  PubMed  Google Scholar 

  16. Tsai Pi, Tsai TH. Simultaneous determination of berberine in rat blood, liver and bile using microdialysis coupled to highperformance liquid chromatography. J Chromatogr A. 2002;961(1):125–30. https://doi.org/10.1016/s0021-9673(02)00365-5.

  17. Lee B, Sur B, Shim I, Lee H, Hahm DH. Phellodendron amurense and its major alkaloid compound, berberine ameliorates scopolamine-induced neuronal impairment and memory dysfunction in rats. Korean J Physiol Pharmacol. 2012;16(2):79–89. https://doi.org/10.4196/kjpp.2012.16.2.79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abdel-Latif MS, Hegazy A, Khalil S, Ghareeb DA. Prophylactic effect of herbal extracts on LPS-induced inflammatory response in rat hepatocytes. Int J Phytomed. 2017;9(1):20–8.

    CAS  Google Scholar 

  19. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.

    Article  CAS  PubMed  Google Scholar 

  20. Wills ED. Mechanisms of lipid peroxide formation in tissues. Role of metals and Haematin proteins in the catalysis of the oxidation unsaturated fatty acids. Biochim Biophys Acta. 1965;98:238–51.

    Article  CAS  PubMed  Google Scholar 

  21. Parihar M, Javeri T, Hemnani T, Dubey A, Prakash P. Responses of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the freshwater catfish (Heteropneustes fossilis) to short-term elevated temperature. J Therm Biol. 1997;22(2):151–6.

    Article  CAS  Google Scholar 

  22. Hjelm M, Verdier C. A methodological study of the enzymatic determination of glucose in blood. Scand J Clin Lab Invest. 1963;15(4):415–28.

    Article  CAS  PubMed  Google Scholar 

  23. Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide Biol Chem. 2001;5(1):62–71. https://doi.org/10.1006/niox.2000.0319.

    Article  CAS  Google Scholar 

  24. Layne E. [73] Spectrophotometric and turbidimetric methods for measuring proteins. Methods Enzymol. 1957;3:447–54.

    Article  Google Scholar 

  25. Doumas BT, Watson WA, Biggs HG. Albumin standards and the measurement of serum albumin with bromcresol green. Clin Chim Acta. 1971;31(1):87–96.

    Article  CAS  PubMed  Google Scholar 

  26. Saraiva C, Praca C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J Controll Release. 2016;235:34–47. https://doi.org/10.1016/j.jconrel.2016.05.044.

    Article  CAS  Google Scholar 

  27. Patel VR, Agrawal YK. Nanosuspension: an approach to enhance solubility of drugs. J Adv Pharm Technol Res. 2011;2(2):81–7. https://doi.org/10.4103/2231-4040.82950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pandian S, Jeevanesan V, Ponnusamy C, Natesan S. RES-loaded pegylated CS NPs: for efficient ocular delivery. IET nanobiotechnology. 2017;11(1):32–9. https://doi.org/10.1049/iet-nbt.2016.0069.

    Article  PubMed  Google Scholar 

  29. Papagiannaros A, Hatziantoniou S, Dimas K, Papaioannou GT, Demetzos C. A liposomal formulation of doxorubicin, composed of hexadecylphosphocholine (HePC): physicochemical characterization and cytotoxic activity against human cancer cell lines. Biomed Pharmacother. 2006;60(1):36–42. https://doi.org/10.1016/j.biopha.2005.09.001.

    Article  CAS  PubMed  Google Scholar 

  30. Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm. 2002;28(1):1–13. https://doi.org/10.1081/DDC-120001481.

    Article  CAS  PubMed  Google Scholar 

  31. Cruz LJ, Tacken PJ, Fokkink R, Figdor CG. The influence of PEG chain length and targeting moiety on antibody-mediated delivery of nanoparticle vaccines to human dendritic cells. Biomaterials. 2011;32(28):6791–803. https://doi.org/10.1016/j.biomaterials.2011.04.082.

    Article  CAS  PubMed  Google Scholar 

  32. Zhan X, Stamova B, Sharp FR. Lipopolysaccharide associates with amyloid plaques, neurons and oligodendrocytes in Alzheimer’s disease brain: a review. Front Aging Neurosci. 2018;10:42. https://doi.org/10.3389/fnagi.2018.00042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Magalingam KB, Radhakrishnan A, Ping NS, Haleagrahara N. Current concepts of neurodegenerative mechanisms in Alzheimer’s disease. Biomed Res Int. 2018;2018:3740461–12. https://doi.org/10.1155/2018/3740461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pangestuti R, Kim SK. Neuroprotective properties of chitosan and its derivatives. Mar Drugs. 2010;8(7):2117–28. https://doi.org/10.3390/md8072117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jang J, Jung Y, Seo SJ, Kim SM, Shim YJ, Cho SH, et al. Berberine activates AMPK to suppress proteolytic processing, nuclear translocation and target DNA binding of SREBP-1c in 3T3-L1 adipocytes. Mol Med Rep. 2017;15(6):4139–47. https://doi.org/10.3892/mmr.2017.6513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brusq JM, Ancellin N, Grondin P, Guillard R, Martin S, Saintillan Y, et al. Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine. J Lipid Res. 2006;47(6):1281–8. https://doi.org/10.1194/jlr.M600020-JLR200.

    Article  CAS  PubMed  Google Scholar 

  37. Hotamisligil GS. Inflammatory pathways and insulin action. Int J Obes. 2003;27(Suppl 3):S53–5. https://doi.org/10.1038/sj.ijo.0802502.

    Article  CAS  Google Scholar 

  38. Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev. 2009;89(3):1025–78. https://doi.org/10.1152/physrev.00011.2008.

    Article  CAS  PubMed  Google Scholar 

  39. Valle I, Alvarez-Barrientos A, Arza E, Lamas S, Monsalve M. PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res. 2005;66(3):562–73. https://doi.org/10.1016/j.cardiores.2005.01.026.

    Article  CAS  PubMed  Google Scholar 

  40. Lira VA, Brown DL, Lira AK, Kavazis AN, Soltow QA, Zeanah EH, et al. Nitric oxide and AMPK cooperatively regulate PGC-1 in skeletal muscle cells. J Physiol. 2010;588(Pt 18):3551–66. https://doi.org/10.1113/jphysiol.2010.194035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lv Q, Zhen Q, Liu L, Gao R, Yang S, Zhou H, et al. AMP-kinase pathway is involved in tumor necrosis factor alpha-induced lipid accumulation in human hepatoma cells. Life Sci. 2015;131:23–9. https://doi.org/10.1016/j.lfs.2015.03.003.

    Article  CAS  PubMed  Google Scholar 

  42. Ghareeb DA, Khalil S, Hafez HS, Bajorath J, Ahmed HE, Sarhan E, et al. Berberine reduces neurotoxicity related to nonalcoholic steatohepatitis in rats. Evidence-based Complement Alternat Med: eCAM. 2015;2015:361847–13. https://doi.org/10.1155/2015/361847.

    Article  PubMed Central  Google Scholar 

  43. Ouyang QQ, Zhao S, Li SD, Song C. Application of chitosan, chitooligosaccharide, and their derivatives in the treatment of Alzheimer’s disease. Mar Drugs. 2017;15(11). https://doi.org/10.3390/md15110322.

  44. Patil GB, Surana SJ. Bio-fabrication and statistical optimization of polysorbate 80 coated chitosan nanoparticles of tapentadol hydrochloride for central antinociceptive effect: in vitro-in vivo studies. Artificial Cells Nanomed Biotechnol. 2017;45(3):505–14. https://doi.org/10.3109/21691401.2016.1163713.

    Article  CAS  Google Scholar 

  45. Pachioni Jde A, Magalhaes JG, Lima EJ, Bueno Lde M, Barbosa JF, de Sa MM, et al. Alkylphospholipids—a promising class of chemotherapeutic agents with a broad pharmacological spectrum. J Pharm Pharm Sci. 2013;16(5):742–59.

    Article  PubMed  Google Scholar 

  46. Khallaf WAI, Messiha BAS, Abo-Youssef AMH, El-Sayed NS. Protective effects of telmisartan and tempol on lipopolysaccharide-induced cognitive impairment, neuroinflammation, and amyloidogenesis: possible role of brain-derived neurotrophic factor. Can J Physiol Pharmacol. 2017;95(7):850–60. https://doi.org/10.1139/cjpp-2017-0042.

    Article  CAS  PubMed  Google Scholar 

  47. Cai Z, Wang C, He W, Chen Y. Berberine alleviates amyloid-beta pathology in the brain of APP/PS1 transgenic mice via inhibiting beta/gamma-secretases activity and enhancing alpha-secretases. Curr Alzheimer Res. 2018;15:1045–52. https://doi.org/10.2174/1567205015666180702105740.

    Article  CAS  PubMed  Google Scholar 

  48. Brambilla D, Verpillot R, Le Droumaguet B, Nicolas J, Taverna M, Kona J, et al. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation: toward engineering of functional nanomedicines for Alzheimer’s disease. ACS Nano. 2012;6(7):5897–908. https://doi.org/10.1021/nn300489k.

    Article  CAS  PubMed  Google Scholar 

  49. Al-Amin MM, Choudhury MFR, Chowdhury AS, Chowdhury TR, Jain P, Kazi M, et al. Pretreatment with risperidone ameliorates systemic LPS-induced oxidative stress in the cortex and hippocampus. Front Neurosci. 2018;12:384. https://doi.org/10.3389/fnins.2018.00384.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018;15:490–503. https://doi.org/10.1016/j.redox.2018.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hussien HM, Abd-Elmegied A, Ghareeb DA, Hafez HS, Ahmed HEA, El-Moneam NA. Neuroprotective effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer’s-like disease in rats. Food Chem Toxicol. 2018;111:432–44. https://doi.org/10.1016/j.fct.2017.11.025.

    Article  CAS  PubMed  Google Scholar 

  52. Perez-Roses R, Risco E, Vila R, Penalver P, Canigueral S. Antioxidant activity of Tween-20 and Tween-80 evaluated through different in-vitro tests. J Pharm Pharmacol. 2015;67(5):666–72. https://doi.org/10.1111/jphp.12369.

    Article  CAS  PubMed  Google Scholar 

  53. Liu-Snyder P, Logan MP, Shi R, Smith DT, Borgens RB. Neuroprotection from secondary injury by polyethylene glycol requires its internalization. J Exp Biol. 2007;210(Pt 8):1455–62. https://doi.org/10.1242/jeb.02756.

    Article  CAS  PubMed  Google Scholar 

  54. Yuan ZY, Hu YL, Gao JQ. Brain localization and neurotoxicity evaluation of polysorbate 80-modified chitosan nanoparticles in rats. PLoS One. 2015;10(8):e0134722. https://doi.org/10.1371/journal.pone.0134722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pocernich CB, Butterfield DA. Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim Biophys Acta. 2012;1822(5):625–30. https://doi.org/10.1016/j.bbadis.2011.10.003.

    Article  CAS  PubMed  Google Scholar 

  56. Al-Saeedan AS, Gautam V, Ansari MN, Singh M, Yadav RK, Rawat JK, et al. Revisiting the systemic lipopolysaccharide mediated neuroinflammation: appraising the effect of l-cysteine mediated hydrogen sulphide on it. Saudi Pharm J. 2018;26(4):520–7. https://doi.org/10.1016/j.jsps.2018.02.004.

    Article  PubMed  PubMed Central  Google Scholar 

  57. He W, Wang C, Chen Y, He Y, Cai Z. Berberine attenuates cognitive impairment and ameliorates tau hyperphosphorylation by limiting the self-perpetuating pathogenic cycle between NF-kappaB signaling, oxidative stress and neuroinflammation. Pharmacol Rep: PR. 2017;69(6):1341–8. https://doi.org/10.1016/j.pharep.2017.06.006.

    Article  CAS  PubMed  Google Scholar 

  58. Banks WA, Dohgu S, Lynch JL, Fleegal-DeMotta MA, Erickson MA, Nakaoke R, et al. Nitric oxide isoenzymes regulate lipopolysaccharide-enhanced insulin transport across the blood-brain barrier. Endocrinology. 2008;149(4):1514–23. https://doi.org/10.1210/en.2007-1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cheng Z, Pang T, Gu M, Gao A-H, Xie C-M, Li J-Y, et al. Berberine-stimulated glucose uptake in L6 myotubes involves both AMPK and p38 MAPK. Biochim Biophys Acta (BBA)-Gen Subj. 2006;1760(11):1682–9.

    Article  CAS  Google Scholar 

  60. Kao CH, Hsiang CY, Ho TY. Assessment of chitosan-affected metabolic response by peroxisome proliferator-activated receptor bioluminescent imaging-guided transcriptomic analysis. PLoS One. 2012;7(4):e34969. https://doi.org/10.1371/journal.pone.0034969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kong W-J, Zhang H, Song D-Q, Xue R, Zhao W, Wei J, et al. Berberine reduces insulin resistance through protein kinase C–dependent up-regulation of insulin receptor expression. Metabolism. 2009;58(1):109–19.

    Article  CAS  PubMed  Google Scholar 

  62. Verma N, Dey C. The anti-leishmanial drug miltefosine causes insulin resistance in skeletal muscle cells in vitro. Diabetologia. 2006;49(7):1656–60.

    Article  CAS  PubMed  Google Scholar 

  63. Hui B, Zhang L, Zhou Q, Hui L. Pristimerin inhibits LPS-triggered neurotoxicity in BV-2 microglia cells through modulating IRAK1/TRAF6/TAK1-mediated NF-kappaB and AP-1 signaling pathways in vitro. Neurotox Res. 2018;33(2):268–83. https://doi.org/10.1007/s12640-017-9837-3.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang H, Shan Y, Wu Y, Xu C, Yu X, Zhao J, et al. Berberine suppresses LPS-induced inflammation through modulating Sirt1/NF-kappaB signaling pathway in RAW264.7 cells. Int Immunopharmacol. 2017;52:93–100. https://doi.org/10.1016/j.intimp.2017.08.032.

    Article  CAS  PubMed  Google Scholar 

  65. Uğurel SS, Kuşçu N, Özenci ÇÇ, Dalaklıoğlu S, Taşatargil A. Resveratrol prevented lipopolysaccharide-induced endothelial dysfunction in rat thoracic aorta through increased eNOS expression. Balkan Med J. 2016;33(2):138–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zeng J, Zhao H, Liu Z, Zhang W, Huang Y. Lipopolysaccharide induces subacute cerebral microhemorrhages with involvement of nitric oxide synthase in rats. J Stroke Cerebrovasc Dis. 2018;27(7):1905–13. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.02.044.

    Article  PubMed  Google Scholar 

  67. Zhu F, Qian C. Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer's disease. BMC Neurosci. 2006;7(1):1.

    Article  CAS  Google Scholar 

  68. Dawson TM, Dawson VL. Nitric oxide signaling in neurodegeneration and cell death. Adv Pharmacol. 2018;82:57–83. https://doi.org/10.1016/bs.apha.2017.09.003.

    Article  PubMed  Google Scholar 

  69. Murray CL, Skelly DT, Cunningham C. Exacerbation of CNS inflammation and neurodegeneration by systemic LPS treatment is independent of circulating IL-1beta and IL-6. J Neuroinflammation. 2011;8:50. https://doi.org/10.1186/1742-2094-8-50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Noh H, Jeon J, Seo H. Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain. Neurochem Int. 2014;69:35–40. https://doi.org/10.1016/j.neuint.2014.02.008.

    Article  CAS  PubMed  Google Scholar 

  71. Zhong J, Deaciuc IV, Burikhanov R, de Villiers WJ. Lipopolysaccharide-induced liver apoptosis is increased in interleukin-10 knockout mice. Biochim Biophys Acta. 2006;1762(4):468–77. https://doi.org/10.1016/j.bbadis.2005.12.012.

    Article  CAS  PubMed  Google Scholar 

  72. Jeschke MG, Rensing H, Klein D, Schubert T, Mautes AE, Bolder U, et al. Insulin prevents liver damage and preserves liver function in lipopolysaccharide-induced endotoxemic rats. J Hepatol. 2005;42(6):870–9. https://doi.org/10.1016/j.jhep.2004.12.036.

    Article  CAS  PubMed  Google Scholar 

  73. Janbaz KH, Gilani AH. Studies on preventive and curative effects of berberine on chemical-induced hepatotoxicity in rodents. Fitoterapia. 2000;71(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  74. Mehrzadi S, Fatemi I, Esmaeilizadeh M, Ghaznavi H, Kalantar H, Goudarzi M. Hepatoprotective effect of berberine against methotrexate induced liver toxicity in rats. Biomed Pharmacother. 2018;97:233–9. https://doi.org/10.1016/j.biopha.2017.10.113.

    Article  CAS  PubMed  Google Scholar 

  75. Yang J, Ma XJ, Li L, Wang L, Chen YG, Liu J, et al. Berberine ameliorates non-alcoholic steatohepatitis in ApoE(−/−) mice. Exp Ther Med. 2017;14(5):4134–40. https://doi.org/10.3892/etm.2017.5051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. El-Denshary E, Aljawish A, El-Nekeety A, Hassan N, Saleh R, Rihn B, et al. Possible synergistic effect and antioxidant properties of chitosan nanoparticles and quercetin against carbon tetrachloride-induce hepatotoxicity in rats. Soft Nanosci Lett. 2015;5:36–51.

    Article  CAS  Google Scholar 

  77. Chen CC, Wu CC. Acute hepatotoxicity of intravenous amiodarone: case report and review of the literature. Am J Ther. 2016;23(1):e260–3. https://doi.org/10.1097/MJT.0000000000000149.

    Article  PubMed  Google Scholar 

  78. Khan AY, Suresh KG. Natural isoquinoline alkaloids: binding aspects to functional proteins, serum albumins, hemoglobin, and lysozyme. Biophys Rev. 2015;7(4):407–20. https://doi.org/10.1007/s12551-015-0183-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bekale L, Agudelo D, Tajmir-Riahi HA. Effect of polymer molecular weight on chitosan-protein interaction. Colloids Surf B: Biointerfaces. 2015;125:309–17. https://doi.org/10.1016/j.colsurfb.2014.11.037.

    Article  CAS  PubMed  Google Scholar 

  80. Comoglu T, Arisoy S, Akkus ZB. Nanocarriers for effective brain drug delivery. Curr Top Med Chem. 2017;17(13):1490–506. https://doi.org/10.2174/1568026616666161222101355.

    Article  CAS  PubMed  Google Scholar 

Download references

Availability of data and materials

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SAS: data acquisition and contribution to data interpretation and manuscript drafting. MIN and LKE: Contribution to the study design, data analysis, and interpretation and major drafting and revision of the manuscript; SAS and DAG: contribution to the study design and biochemical assessments; LY: histopathological examination and data interpretation. SAS and LKE: responsibility for the integrity of the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohamed I. Nounou.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval

Animal handling and experimental protocols were approved by the Research Ethics Committee of the Medical Research Institute, Alexandria University (Alexandria, Egypt) and complied with the Guide for the Care and Use of Laboratory Animals issued by the National Research Council (US) Institute for Laboratory Animal Research (ILAR, 1996).

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soudi, S.A., Nounou, M.I., Sheweita, S.A. et al. Protective effect of surface-modified berberine nanoparticles against LPS-induced neurodegenerative changes: a preclinical study. Drug Deliv. and Transl. Res. 9, 906–919 (2019). https://doi.org/10.1007/s13346-019-00626-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-019-00626-1

Keywords

Navigation