Skip to main content
Log in

Movement of giant lipid vesicles induced by millimeter wave radiation change when they contain magnetic nanoparticles

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Superparamagnetic iron oxide nanoparticles are used in a rapidly expanding number of research and practical applications in biotechnology and biomedicine. Recent developments in iron oxide nanoparticle design and understanding of nanoparticle membrane interactions have led to applications in magnetically triggered, liposome delivery vehicles with controlled structure. Here we study the effect of external physical stimuli—such as millimeter wave radiation—on the induced movement of giant lipid vesicles in suspension containing or not containing iron oxide maghemite (γ-Fe2O3) nanoparticles (MNPs). To increase our understanding of this phenomenon, we used a new microscope image-based analysis to reveal millimeter wave (MMW)-induced effects on the movement of the vesicles. We found that in the lipid vesicles not containing MNPs, an exposure to MMW induced collective reorientation of vesicle motion occurring at the onset of MMW switch “on.” Instead, no marked changes in the movements of lipid vesicles containing MNPs were observed at the onset of first MMW switch on, but, importantly, by examining the course followed; once the vesicles are already irradiated, a directional motion of vesicles was induced. The latter vesicles were characterized by a planar motion, absence of gravitational effects, and having trajectories spanning a range of deflection angles narrower than vesicles not containing MNPs. An explanation for this observed delayed response could be attributed to the possible interaction of MNPs with components of lipid membrane that, influencing, e.g., phospholipids density and membrane stiffening, ultimately leads to change vesicle movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Woodle MC, Newman MS, Cohen JA. Sterically stabilized liposomes: physical and biological properties. J Drug Target. 1994;2(5):397–403. https://doi.org/10.3109/10611869408996815.

    Article  CAS  PubMed  Google Scholar 

  2. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–22. https://doi.org/10.1126/science.1095833.

    Article  CAS  PubMed  Google Scholar 

  3. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60. https://doi.org/10.1038/nrd1632.

    Article  CAS  PubMed  Google Scholar 

  4. Kagan D, Laocharoensuk R, Zimmerman M, Clawson C, Balasubramanian S, Kong D, et al. Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small. 2010;6(23):2741–7. https://doi.org/10.1002/smll.201001257.

    Article  CAS  PubMed  Google Scholar 

  5. MacDonald M, Spalding G, Dholakia K. Microfluidic sorting in an optical lattice. Nature. 2003;426(6965):421–4. https://doi.org/10.1038/nature02144.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou R, Wang C. Acoustic bubble enhanced pinched flow fractionation for microparticle separation. J Micromech Microeng. 2015;25(8):084005. https://doi.org/10.1088/0960-1317/25/8/084005.

    Article  CAS  Google Scholar 

  7. Baylis JR, Chan KY, Kastrup CJ. Halting hemorrhage with self-propelling particles and local drug delivery. Thromb Res. 2016;141(Suppl 2):S36–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tabatabaei SN, Duchemin S, Girouard H, Martel S. Towards MR-navigable nanorobotic carriers for drug delivery into the brain. IEEE Int Conf Robot Autom. 2012;14:727–32.

    Google Scholar 

  9. Dimova R, Riske KA, Aranda S, Bezlyepkina N, Knorr RL, Lipowsky R. Giant vesicles in electric fields. Soft Matter. 2007;3(7):817–27.

    Article  CAS  Google Scholar 

  10. Dimova R, Bezlyepkina N, Jordö MD, Knorr RL, Riske KA, Staykova M, et al. Vesicles in electric fields: some novel aspects of membrane behavior. Soft Matter. 2009;5(17):3201–12. https://doi.org/10.1039/b901963d.

    Article  CAS  Google Scholar 

  11. Kolahdouz EM, Salac D. Dynamics of three-dimensional vesicles in dc electric fields. Phys Rev E. 2015;92(1):012302. https://doi.org/10.1103/PhysRevE.92.012302.

    Article  CAS  Google Scholar 

  12. Salipante PF, Vlahovska PM. Vesicle deformation in DC electric pulses. Soft Matter. 2014;10:3386–93.

    Article  CAS  PubMed  Google Scholar 

  13. Salac D. Vesicles in magnetic fields. Soft Condensed Matter. 2016; arXiv:1608.05587v1.

  14. Alavi M, Karimi N, Safaei M. Application of various types of liposomes in drug delivery systems. Adv Pharm Bull. 2017;7(1):3–9. https://doi.org/10.15171/apb.2017.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2) https://doi.org/10.3390/pharmaceutics9020012.

  16. Dai M, Wu C, Fang HM, Li L, Yan JB, Zeng DL, et al. Thermo-responsive magnetic liposomes for hyperthermia-triggered local drug delivery. J Microencapsul. 2017;34(4):408–15. https://doi.org/10.1080/02652048.2017.1339738.

    Article  CAS  PubMed  Google Scholar 

  17. Jain A, Tiwari A, Verma A, Jain SK. Ultrasound-based triggered drug delivery to tumors. Drug Deliv Transl Res. 2018;8(1):150–64. https://doi.org/10.1007/s13346-017-0448-6.

    Article  CAS  PubMed  Google Scholar 

  18. Nappini S, Al Kayal T, Berti D, Nord Èn B, Baglioni P. Magnetically triggered release from giant unilamellar vesicles: visualization by means of confocal microscopy. J Phys Chem Lett. 2011;2(7):713–8. https://doi.org/10.1021/jz2000936.

    Article  CAS  Google Scholar 

  19. Ramundo-Orlando A, Longo G, Cappelli M, Girasole M, Tarricone L, Beneduci A, et al. The response of giant phospholipid vesicles to millimeter waves radiation. Biochim Biophys Acta. 2009;1788(7):1497–507. https://doi.org/10.1016/j.bbamem.2009.04.006.

    Article  CAS  PubMed  Google Scholar 

  20. Rojavin MA, Ziskin MC. Medical application of millimetre waves. QJM. 1998;91(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  21. Usichenko TI, Edinger H, Gizhko VV, Lehmann C, Wendt M, Feyerherd F. Low-intensity electromagnetic millimeter waves for pain therapy. Evidence-based complementary and alternative medicine. eCAM. 2006;3(2):201–7. https://doi.org/10.1093/ecam/nel012.

    Article  PubMed  Google Scholar 

  22. Partyla T, Hacker H, Edinger H, Leutzow B, Lange J, Usichenko T. Remote effects of electromagnetic millimeter waves on experimentally induced cold pain: a double-blinded crossover investigation in healthy volunteers. Anesth Analg. 2017;124(3):980–5. https://doi.org/10.1213/ANE.0000000000001657.

    Article  PubMed  Google Scholar 

  23. Vecchia P, Matthes R, Ziegelberger G, Lin J, Saunders R, Swerdlow A. Exposure to high frequency electromagnetic fields, biological effects and health consequences (100 kHz-300 GHz). International Commission on Non-Ionizing Radiation Protection; 2009.

  24. Ramundo-Orlando A. Effects of millimeter waves radiation on cell membrane—a brief review. J Infrared Millimeter Terahertz Waves. 2010;31(12):1400–11. https://doi.org/10.1007/s10762-010-9731-z.

    Article  Google Scholar 

  25. Albini M, Dinarelli S, Pennella F, Romeo S, Zampetti E, Girasole M, et al. Induced movements of giant vesicles by millimeter wave radiation. Biochim Biophys Acta. 2014;1838(7):1710–8. https://doi.org/10.1016/j.bbamem.2014.03.021.

    Article  CAS  PubMed  Google Scholar 

  26. Angelakeris M. Magnetic nanoparticles: a multifunctional vehicle for modern theranostics. Biochim Biophys Acta. 2017;1861(6):1642–51. https://doi.org/10.1016/j.bbagen.2017.02.022.

    Article  CAS  Google Scholar 

  27. Estelrich J, Escribano E, Queralt J, Busquets MA. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci. 2015;16(4):8070–101. https://doi.org/10.3390/ijms16048070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shirmardi Shaghasemi B, Virk MM, Reimhult E. Optimization of magneto-thermally controlled release kinetics by tuning of magnetoliposome composition and structure. Sci Rep. 2017;7(1):7474. https://doi.org/10.1038/s41598-017-06980-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Preiss MR, Bothun GD. Stimuli-responsive liposome-nanoparticle assemblies. Expert Opin Drug Deliv. 2011;8(8):1025–40. https://doi.org/10.1517/17425247.2011.584868.

    Article  CAS  PubMed  Google Scholar 

  30. Kuster N, Schonborn F. Recommended minimal requirements and development guidelines for exposure setups of bio-experiments addressing the health risk concern of wireless communications. Bioelectromagnetics. 2000;21(7):508–14.

    Article  CAS  PubMed  Google Scholar 

  31. Pautot S, Frisken BJ, Weitz DA. Production of unilamellar vesicles using an inverted emulsion. Langmuir. 2003;19(7):2870–9. https://doi.org/10.1021/la026100v.

    Article  CAS  Google Scholar 

  32. Carrara P, Stano P, Luisi PL. Giant vesicles “colonies”: a model for primitive cell communities. Chembiochem. 2012;13(10):1497–502. https://doi.org/10.1002/cbic.201200133.

    Article  CAS  PubMed  Google Scholar 

  33. Saywell LG, Cunningham BB. Determination of Iron: colorimetric o-phenanthroline method. Ind Eng Chem Anal Ed. 1937;9(2):67–9. https://doi.org/10.1021/ac50106a005.

    Article  CAS  Google Scholar 

  34. Zhao JX. Numerical dosimetry for cells under millimetre-wave irradiation using Petri dish exposure set-ups. Phys Med Biol. 2005;50(14):3405–21. https://doi.org/10.1088/0031-9155/50/14/015.

    Article  CAS  PubMed  Google Scholar 

  35. Mally M, Majhenc J, Svetina S, Zeks B. The response of giant phospholipid vesicles to pore-forming peptide melittin. Biochim Biophys Acta. 2007;1768(5):1179–89. https://doi.org/10.1016/j.bbamem.2007.02.015.

    Article  CAS  PubMed  Google Scholar 

  36. Riske KA, Dimova R. Electro-deformation and poration of giant vesicles viewed with high temporal resolution. Biophys J. 2005;88(2):1143–55. https://doi.org/10.1529/biophysj.104.050310.

    Article  CAS  PubMed  Google Scholar 

  37. Hough PVC. Method and means for recognizing complex pattern. US Patent No3069654. 1962.

  38. Chiba M, Miyazaki M, Ishiwata S. Quantitative analysis of the lamellarity of giant liposomes prepared by the inverted emulsion method. Biophys J. 2014;107(2):346–54. https://doi.org/10.1016/j.bpj.2014.05.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bonnaud C, Monnier CA, Demurtas D, Jud C, Vanhecke D, Montet X, et al. Insertion of nanoparticle clusters into vesicle bilayers. ACS Nano. 2014;8(4):3451–60. https://doi.org/10.1021/nn406349z.

    Article  CAS  PubMed  Google Scholar 

  40. Giardini PA, Fletcher DA, Theriot JA. Compression forces generated by actin comet tails on lipid vesicles. Proc Natl Acad Sci U S A. 2003;100(11):6493–8. https://doi.org/10.1073/pnas.1031670100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Husen P, Fidorra M, Hartel S, Bagatolli LA, Ipsen JH. A method for analysis of lipid vesicle domain structure from confocal image data. Eur Biophys J. 2012;41(2):161–75. https://doi.org/10.1007/s00249-011-0768-2.

    Article  CAS  PubMed  Google Scholar 

  42. Rey Suarez I, Leidy C, Tellez G, Gay G, Gonzalez-Mancera A. Slow sedimentation and deformability of charged lipid vesicles. PLoS One. 2013;8(7):e68309. https://doi.org/10.1371/journal.pone.0068309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pasenkiewicz-Gierula M, Baczynski K, Markiewicz M, Murzyn K. Computer modelling studies of the bilayer/water interface. Biochim Biophys Acta. 2016;1858(10):2305–21. https://doi.org/10.1016/j.bbamem.2016.01.024.

    Article  CAS  PubMed  Google Scholar 

  44. Chukova YP. Doubts about nonthermal effects of MM radiation have no scientific foundations. J Phys Conf Ser. 2011;329(1) https://doi.org/10.1088/1742-6596/329/1/012032.

  45. Beneduci A, Bernstein E. Review on the mechanisms of interaction between millimeter waves and biological systems. Bioelectrochem Res Dev. 2008:35–80.

  46. Chukova YP. Reasons of poor replicability of nonthermal bioeffects by millimeter waves. Bioelectrochem Bioenerg. 1999;48(2):349–53.

    Article  CAS  PubMed  Google Scholar 

  47. Vlahovska PM, Gracia RS, Aranda-Espinoza S, Dimova R. Electrohydrodynamic model of vesicle deformation in alternating electric fields. Biophys J. 2009;96(12):4789–803. https://doi.org/10.1016/j.bpj.2009.03.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Seiwert J, Vlahovska PM. Instability of a fluctuating membrane driven by an ac electric field. Phys Rev E Stat Nonlinear Soft Matter Phys. 2013;87(2):022713. https://doi.org/10.1103/PhysRevE.87.022713.

    Article  CAS  Google Scholar 

  49. Monnier CA, Burnand D, Rothen-Rutishauser B, Lattuada M, Petri-Fink A. Magnetoliposomes: opportunities and challenges. Eur J Nanomed. 2014;6(4):201–15. https://doi.org/10.1515/ejnm-2014-0042.

    Article  CAS  Google Scholar 

  50. Schulz M, Olubummo A, Binder WH. Beyond the lipid-bilayer: interaction of polymers and nanoparticles with membranes. Soft Matter. 2012;8(18):4849–64. https://doi.org/10.1039/c2sm06999g.

    Article  CAS  Google Scholar 

  51. Man D, Olchawa R. Dynamics of surface of lipid membranes: theoretical considerations and the ESR experiment. Eur Biophys J. 2017;46(4):325–34. https://doi.org/10.1007/s00249-016-1172-8.

    Article  CAS  PubMed  Google Scholar 

  52. Darros-Barbosa R, Balaban MO, Teixeira AA. Temperature and concentration dependence of heat capacity of model aqueous solutions. Int J Food Prop. 2003;6(2):239–58. https://doi.org/10.1081/JFP-120017845.

    Article  Google Scholar 

  53. Keblinski P, Cahill DG, Bodapati A, Sullivan CR, Taton TA. Limits of localized heating by electromagnetically excited nanoparticles. J Appl Phys. 2006;100(5) https://doi.org/10.1063/1.2335783.

  54. Khizhnyak EP, Ziskin MC. Temperature oscillations in liquid media caused by continuous (nonmodulated) millimeter wavelength electromagnetic irradiation. Bioelectromagnetics. 1996;17(3):223–9. https://doi.org/10.1002/(SICI)1521-186X(1996)17:3<223::AID-BEM8>3.0.CO;2-5.

    Article  CAS  PubMed  Google Scholar 

  55. Schuderer J, Samaras T, Oesch W, Spät D, Kuster N. High peak SAR exposure unit with tight exposure and environmental control for in vitro experiments at 1800 MHz. IEEE Trans Microwave Theory Tech. 2004;52(8 II):2057–66. https://doi.org/10.1109/TMTT.2004.832009.

    Article  Google Scholar 

  56. Zhao J. In vitro dosimetry and temperature evaluations of a typical millimeter-wave aperture-field exposure setup. IEEE Trans Microwave Theory Tech. 2012;60(11):3608–22. https://doi.org/10.1109/TMTT.2012.2213829.

    Article  Google Scholar 

  57. IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz. 1992.

  58. Fannin P, Relihan T, Charles S. Experimental and theoretical profiles of the frequency-dependent complex susceptibility of systems containing nanometer-sized magnetic particles. Phys Rev B Condens Matter Mater Phys. 1997;55(21):14423–8. https://doi.org/10.1103/PhysRevB.55.14423.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonsina Ramundo-Orlando.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albini, M., Salvi, M., Altamura, E. et al. Movement of giant lipid vesicles induced by millimeter wave radiation change when they contain magnetic nanoparticles. Drug Deliv. and Transl. Res. 9, 131–143 (2019). https://doi.org/10.1007/s13346-018-0572-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-018-0572-y

Keywords

Navigation