Skip to main content

Advertisement

Log in

Natural and synthetic polymer-based smart biomaterials for management of ulcerative colitis: a review of recent developments and future prospects

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Ulcerative colitis (UC) is an inflammatory disease of the colon that severely affects the quality of life of patients and usually responds well to anti-inflammatory agents for symptomatic relief; however, many patients need colectomy, a surgical procedure to remove whole or part of the colon. Though various types of pharmacological agents have been employed for the management of UC, the lack of effectiveness is usually predisposed to various reasons including lack of target-specific delivery of drugs and insufficient drug accumulation at the target site. To overcome these glitches, many researchers have designed and characterized various types of versatile polymeric biomaterials to achieve target-specific delivery of drugs via oral route to optimize their targeting efficiency to the colon, to improve drug accumulation at the target site, as well as to ameliorate off-target effects of chemotherapy. Therefore, the aim of this review was to summarize and critically discuss the pharmaceutical significance and therapeutic feasibility of a wide range of natural and synthetic biomaterials for efficient drug targeting to colon and rationalized treatment of UC. Among various types of biomaterials, natural and synthetic polymer-based hydrogels have shown promising targeting potential due to their innate pH responsiveness, sustained and controlled release characteristics, and microbial degradation in the colon to release the encapsulated drug moieties. These characteristic features make natural and synthetic polymer-based hydrogels superior to conventional pharmacological strategies for the management of UC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Danese S, Fiocchi C. Ulcerative colitis. N. Engl. J. Med. 2011;365:1713–25. https://doi.org/10.1055/s-0030-1268248.

    Article  CAS  PubMed  Google Scholar 

  2. Cosnes J, Cortot A. Epidemiology and natural history of inflammatory bowel diseases. YGAST. 2011;140:1785–1794.e4. https://doi.org/10.1053/j.gastro.2011.01.055.

    Article  Google Scholar 

  3. B. Moum, A. Ekbom, M.H. Vatn, K. Elgjo, Change in the extent of colonoscopic and histological involvement in ulcerative colitis over time, 94 (1999) 0–5.

  4. E. Langholz, Current trends in inflammatory bowel disease: the natural history, (2010) 77–86. doi:https://doi.org/10.1177/1756283X10361304, 3

  5. M. Van Der Have, H.H. Fidder, M. Leenders, A.A. Kaptein, M.E. Van Der Valk, A.A. Van Bodegraven, G. Dijkstra, D.J. De Jong, M. Pierik, C.Y. Ponsioen, A.E.V.D.M. Jong, C.J. Van Der Woude, P.C. Van De Meeberg, M.J.L. Romberg-camps, J.R. Vermeijden, P.D. Siersema, B. Oldenburg, Self-reported disability in patients with inflammatory bowel disease largely determined by disease activity and illness perceptions, 21 (2015) 369–377. doi:https://doi.org/10.1097/MIB.0000000000000278.

  6. L. Zhao, J. Li, T. Yu, G. Chen, Y. Yuan, Q. Chen, 5-Aminosalicylates reduce the risk of colorectal neoplasia in patients with ulcerative colitis: an updated meta-analysis, 9 (2014). doi:https://doi.org/10.1371/journal.pone.0094208.

  7. Xu J, Tam M, Samadei S, Lerouge S, Barralet J, Stevenson M, et al. Department of Mining and Materials Engineering, Faculty of Engineering, McGill Marta Cerruti, PhDMucoadhesive chitosan hydrogels as rectal drug delivery vessels to treat ulcerative colitis. Acta Biomater. 2016; https://doi.org/10.1016/j.actbio.2016.10.026.

  8. Duan H, Lü S, Gao C, Bai X, Qin H, Wei Y, et al. Mucoadhesive microparticulates based on polysaccharide for target dual drug delivery of 5-aminosalicylic acid and curcumin to inflamed colon. Colloids Surfaces B Biointerfaces. 2016;145:510–9. https://doi.org/10.1016/j.colsurfb.2016.05.038.

    Article  CAS  PubMed  Google Scholar 

  9. Sales-Campos H, Basso PJ, Alves VBF, Fonseca MTC, Bonfá G, Nardini V, et al. Classical and recent advances in the treatment of inflammatory bowel diseases. Braz J Med Biol Res. 2015;48:96–107. https://doi.org/10.1590/1414-431X20143774.

    Article  CAS  PubMed  Google Scholar 

  10. Xu J, Tam M, Samaei S, Lerouge S, Barralet J, Stevenson MM, et al. Mucoadhesive chitosan hydrogels as rectal drug delivery vessels to treat ulcerative colitis. Acta Biomater. 2017;48:247–57. https://doi.org/10.1016/j.actbio.2016.10.026.

    Article  CAS  PubMed  Google Scholar 

  11. Panccione R, Ghosh S, Middleton S, Marquez JR, Khalif I, Flint L, et al. Infliximab, azathioprine, or infliximab+ azathioprine for treatment of moderate to severe ulcerative colitis: the UC SUCCESS trial. Gastroenterology. 2011;140:S-134.

    Article  Google Scholar 

  12. Cottone M, Kohn A, Daperno M, Armuzzi A, Guidi L, D’Inca R, et al. Advanced age is an independent risk factor for severe infections and mortality in patients given anti-tumor necrosis factor therapy for inflammatory bowel disease. Clin Gastroenterol Hepatol. 2011;9:30–5. https://doi.org/10.1016/j.cgh.2010.09.026.

    Article  CAS  PubMed  Google Scholar 

  13. Smits P, Thien T, Erkelens DW, Romijn JA. The Netherlands Journal of Medicine. 2004;

  14. ASHP. No title. In: AHFS; 1994.

    Google Scholar 

  15. Gisbert JP, Chaparro M. Systematic review with meta-analysis: inflammatory bowel disease in the elderly. Aliment Pharmacol Ther. 2014;39:459–77. https://doi.org/10.1111/apt.12616.

    Article  CAS  PubMed  Google Scholar 

  16. Ahmed O, Nguyen GC. Therapeutic challenges of managing inflammatory bowel disease in the elderly patient. Expert Rev. Gastroenterol. Hepatol. 2016;10:1005–10. https://doi.org/10.1080/17474124.2016.1179579.

    Article  CAS  PubMed  Google Scholar 

  17. Shilpa, Srinivasan BP, Chauhan M. Niosomes as vesicular carriers for delivery of proteins and biologicals. Int. J. Drug Deliv. 2011;3:14–24. https://doi.org/10.5138/ijdd.2010.0975.0215.03050.

    Article  CAS  Google Scholar 

  18. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65:36–48. https://doi.org/10.1016/j.addr.2012.09.037.

    Article  CAS  PubMed  Google Scholar 

  19. Çağdaş M, Sezer AD, Bucak S. Liposomes as potential drug carrier systems for drug delivery. Nanotechnol. Nanomater. “Application Nanotechnol. Drug Deliv.”. 2014:1–50. https://doi.org/10.5772/57028.

  20. Aleksovski A, Dreu R, Gašperlin M, Planinšek O. Mini-tablets: a contemporary system for oral drug delivery in targeted patient groups. Expert Opin Drug Deliv. 2015;12:65–84. https://doi.org/10.1517/17425247.2014.951633.

    Article  CAS  PubMed  Google Scholar 

  21. Dash TR, Verma P. Matrix tablets: an approach towards oral extended release drug delivery. Int J Pharma Res Rev. 2013;2:12–24.

    CAS  Google Scholar 

  22. Fox CB, Kim J, Le LV, Nemeth CL, Chirra HD, Desai TA. Micro/nanofabricated platforms for oral drug delivery. J Control Release. 2015;219:431–44. https://doi.org/10.1016/j.jconrel.2015.07.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Luo Y, Wang Q. Zein-based micro- and nano-particles for drug and nutrient delivery: a review. J Appl Polym Sci. 2014;131 https://doi.org/10.1002/app.40696.

  24. S. Zhang, J. Ermann, M.D. Succi, A. Zhou, M.J. Hamilton, B. Cao, J.R. Korzenik, J.N. Glickman, P.K. Vemula, L.H. Glimcher, G. Traverso, R. Langer, J.M. Karp, An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease, Sci Transl Med 7 (2015) 300ra128-300ra128. doi:https://doi.org/10.1126/scitranslmed.aaa5657.

  25. Toma H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev. 2012:2193–221. https://doi.org/10.1039/c1cs15203c.

  26. Shi J, Xing MMQ, Zhong W. Development of hydrogels and biomimetic regulators as tissue engineering scaffolds. Membranes (Basel). 2012;2:70–90. https://doi.org/10.3390/membranes2010070.

    Article  CAS  Google Scholar 

  27. Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer (Guildf). 2008;49:1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027.

    Article  CAS  Google Scholar 

  28. Sohail M, Ahmad M, Usman M, Ali L. Controlled delivery of valsartan by cross-linked polymeric matrices: synthesis, in vitro and in vivo evaluation. Int J Pharm. 2015;487:110–9. https://doi.org/10.1016/j.ijpharm.2015.04.013.

    Article  CAS  PubMed  Google Scholar 

  29. Jiang J, Parker CE, Fuller JR, Kawula TH, Borchers CH. NIH public access. Anal Chim Acta. 2008;605:70–9. https://doi.org/10.1016/j.immuni.2010.12.017.Two-stage.

    Article  Google Scholar 

  30. Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Publ Gr. 2016;1:1–18. https://doi.org/10.1038/natrevmats.2016.71.

    Article  CAS  Google Scholar 

  31. Long Zhao HM, Yosh F. Synthesis of pH-sensitive and biodegradable CM-cellulose/chitosan polyampholytic hydrogels with electron beam irradiation. J Bioact Compat Polym. 2008;23:319–33. https://doi.org/10.1177/0883911508092302.

    Article  CAS  Google Scholar 

  32. Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J. 2015;65:252–67. https://doi.org/10.1016/j.eurpolymj.2014.11.024.

    Article  CAS  Google Scholar 

  33. Neufeld L, Bianco-Peled H. Accepted crtInt J Biol Macromol. 2017;101:852–61. https://doi.org/10.1016/j.ijbiomac.2017.03.167.

    Article  CAS  PubMed  Google Scholar 

  34. Rehmani S, Ahmad M, Usman M, Hina M. Development of natural and synthetic polymer-based semi-interpenetrating polymer network for controlled drug delivery: optimization and in vitro evaluation studies. Polym Bull. 2016;74:737–61. https://doi.org/10.1007/s00289-016-1743-y.

    Article  CAS  Google Scholar 

  35. Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2010;62:83–99. https://doi.org/10.1016/j.addr.2009.07.019.

    Article  CAS  PubMed  Google Scholar 

  36. Langer R, Vacanti J. Tissue engineering. Am. Assoc. Adv Sci. 1993;260:920–6. https://doi.org/10.1016/j.biomaterials.2009.08.058.Thermosensitive.

    Article  CAS  Google Scholar 

  37. Gumera C, Rauck B, Wang Y. Materials for central nervous system regeneration: bioactive cues. J Mater Chem. 2011;21:7033. https://doi.org/10.1039/c0jm04335d.

    Article  CAS  Google Scholar 

  38. Sakai S, Hirose K, Taguchi K, Ogushi Y, Kawakami K. An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials. 2009;30:3371–7. https://doi.org/10.1016/j.biomaterials.2009.03.030.

    Article  CAS  PubMed  Google Scholar 

  39. Tae G, Kim YJ, Il Choi W, Kim M, Stayton PS, Hoffman AS. Formation of a novel heparin-based hydrogel in the presence of heparin-binding biomolecules. Biomacromolecules. 2007;8:1979–86. https://doi.org/10.1021/bm0701189.

    Article  CAS  PubMed  Google Scholar 

  40. Lü S, Li B, Ni B, Sun Z, Liu M, Wang Q. Thermoresponsive injectable hydrogel for three-dimensional cell culture: chondroitin sulfate bioconjugated with poly(N-isopropylacrylamide) synthesized by RAFT polymerization. Soft Matter. 2011;7:10763. https://doi.org/10.1039/c1sm06053h.

    Article  CAS  Google Scholar 

  41. Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials. 2010;31:4639–56. https://doi.org/10.1016/j.biomaterials.2010.02.044.Bioactive.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE. Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release. 2014;190:254–73. https://doi.org/10.1016/j.jconrel.2014.03.052.

    Article  CAS  PubMed  Google Scholar 

  43. Lohani A, Singh G, Bhattacharya SS, Verma A. Interpenetrating polymer networks as innovative drug delivery systems. J Drug Deliv. 2014;2014:583612–1. https://doi.org/10.1155/2014/583612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chatterjee B, Amalina N, Sengupta P, Mandal UK. Mucoadhesive polymers and their mode of action: a recent update, vol. 7; 2017. p. 195–203. https://doi.org/10.7324/JAPS.2017.70533.

    Book  Google Scholar 

  45. Dheer D, Arora D, Jaglan S, Rawal RK, Shankar R, Dheer D, et al. Polysaccharides based nanomaterials for targeted anti-cancer drug delivery, vol. 2330; 2017. https://doi.org/10.3109/1061186X.2016.1172589.

    Book  Google Scholar 

  46. An B, Lin YS, Brodsky B. Collagen interactions: drug design and delivery. Adv Drug Deliv Rev. 2016;97:69–84. https://doi.org/10.1016/j.addr.2015.11.013.

    Article  CAS  PubMed  Google Scholar 

  47. Ahmad E, Fatima MT, Hoque M, Owais M, Saleemuddin M. Fibrin matrices: the versatile therapeutic delivery systems. Int J Biol Macromol. 2015;81:121–36. https://doi.org/10.1016/j.ijbiomac.2015.07.054.

    Article  CAS  PubMed  Google Scholar 

  48. Van Tomme SR, Hennink WE. Biodegradable dextran hydrogels for protein delivery applications. Expert Rev Med Devices. 2007;4:147–64. https://doi.org/10.1586/17434440.4.2.147.

    Article  PubMed  Google Scholar 

  49. Kolanthai E, Ganesan K, Epple M, Kalkura SN. Synthesis of nanosized hydroxyapatite/agarose powders for bone filler and drug delivery application. Mater Today Commun. 2016;8:31–40. https://doi.org/10.1016/j.mtcomm.2016.03.008.

    Article  CAS  Google Scholar 

  50. Mart RJ, Osborne RD, Stevens MM, Ulijn RV. Peptide-based stimuli-responsive biomaterials. Soft Matter. 2006;2:822. https://doi.org/10.1039/b607706d.

    Article  CAS  Google Scholar 

  51. MacLeod GS, Fell JT, Collett JH. Studies on the physical properties of mixed pectin/ethylcellulose films intended for colonic drug delivery. Int J Pharm. 1997;157:53–60. https://doi.org/10.1016/S0378-5173(97)00216-0.

    Article  CAS  Google Scholar 

  52. Semdé R, Amighi K, Pierre D, Devleeschouwer MJ, Moës AJ. Leaching of pectin from mixed pectin/insoluble polymer films intended for colonic drug delivery. Int J Pharm. 1998;174:233–41. https://doi.org/10.1016/S0378-5173(98)00269-5.

    Article  Google Scholar 

  53. Wong TW, Nurjaya S. Drug release property of chitosan-pectinate beads and its changes under the influence of microwave. Eur J Pharm Biopharm. 2008;69:176–88. https://doi.org/10.1016/j.ejpb.2007.09.015.

    Article  CAS  PubMed  Google Scholar 

  54. Thakur BR, Singh RK, Handa AK, Rao MA. Critical reviews in food science and nutrition chemistry and uses of pectin—a review chemistry and uses of pectin—a review. Crit Rev Food Sci Nutr. 2009;37(1):47–73. https://doi.org/10.1080/10408399709527767.

    Article  Google Scholar 

  55. Bawa P, Choonara YE, Du Toit LC, Kumar P, Ndesendo VMK, Meyer LCR, et al. A novel stimuli-synchronized alloy-treated matrix for space-defined gastrointestinal delivery of mesalamine in the large white pig model. J Control Release. 2013;166:234–45. https://doi.org/10.1016/j.jconrel.2012.12.011.

    Article  CAS  PubMed  Google Scholar 

  56. Bigucci F, Luppi B, Monaco L, Cerchiara T, Zecchi V. Pectin-based microspheres for colon-specific delivery of vancomycin. J Pharm Pharmacol. 2009;61:41–6. https://doi.org/10.1211/jpp/61.01.0006.

    Article  CAS  PubMed  Google Scholar 

  57. Eswaramma S, Reddy NS, Rao KSVK. Phosphate crosslinked pectin based dual responsive hydrogel networks and nanocomposites: development, swelling dynamics and drug release characteristics. Int J Biol Macromol. 2017;103:1162–72. https://doi.org/10.1016/j.ijbiomac.2017.05.160.

    Article  CAS  PubMed  Google Scholar 

  58. Almeida EAMS, Bellettini IC, Garcia FP, Farinácio MT, Nakamura CV, Rubira AF, et al. Curcumin-loaded dual pH- and thermo-responsive magnetic microcarriers based on pectin maleate for drug delivery. Carbohydr Polym. 2017;171:259–66. https://doi.org/10.1016/j.carbpol.2017.05.034.

    Article  CAS  PubMed  Google Scholar 

  59. R.K. Mishra, M. Datt, A.K. Banthia, Synthesis and characterization of pectin/PVP hydrogel membranes for drug delivery system, 9 (2008). doi:https://doi.org/10.1208/s12249-008-9048-6.

  60. L. Costas, L.M. Pera, A.G. López, M. Mechetti, G.R. Castro, Controlled release of sulfasalazine release from “smart” pectin gel microspheres under physiological simulated fluids, (2012) 1396–1407. doi:https://doi.org/10.1007/s12010-012-9615-x.

  61. Newton AMJ, Lakshmanan P. Effect of HPMC-E15 LV premium polymer on release profile and compression characteristics of chitosan/ pectin colon targeted mesalamine matrix tablets and in vitro study on effect of pH impact on the drug release profile. Recent Pat Drug Deliv Formul. 2014;8:46–62. https://doi.org/10.2174/1872211308666140225143926.

    Article  CAS  PubMed  Google Scholar 

  62. Birch NP, Barney LE, Pandres E, Peyton SR, JD. Thermal-responsive behavior of a cell compatible chitosan/pectin hydrogel Schiffman. Biomacromolecules. 2015;16(6);1837–1843

  63. Ekaterina D, Sergey AM. Pectin-silica gels as matrices for controlled drug release in gastrointestinal tract. Carbohydr Polym. 2016;157:9–20. https://doi.org/10.1016/j.carbpol.2016.09.048.

    Article  CAS  Google Scholar 

  64. Kumar MNVR, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. Chem Rev. 2004;104:6017–84. https://doi.org/10.1021/cr030441b.

    Article  PubMed  Google Scholar 

  65. J.J. Thevarajah, Characterisation of chitosan and its films, (2016).

    Google Scholar 

  66. Aider M. Chitosan application for active bio-based films production and potential in the food industry: review. LWT - Food Sci Technol. 2010;43:837–42. https://doi.org/10.1016/j.lwt.2010.01.021.

    Article  CAS  Google Scholar 

  67. Muzzarelli RAA. Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cell Mol Life Sci. 1997;53:131–40. https://doi.org/10.1007/PL00000584.

    Article  CAS  PubMed  Google Scholar 

  68. No HK, Young Park N, Ho Lee S, Meyers SP. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol. 2002;74:65–72. https://doi.org/10.1016/S0168-1605(01)00717-6.

    Article  CAS  PubMed  Google Scholar 

  69. Ravi Kumar MN. A review of chitin and chitosan applications. React Funct Polym. 2000;46:1–27. https://doi.org/10.1016/S1381-5148(00)00038-9.

    Article  Google Scholar 

  70. Borchard G, Lueßen HL, De Boer AG, Verhoef JC, Lehr CM, Junginger HE. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. III: Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. J Control Release. 1996;39:131–8. https://doi.org/10.1016/0168-3659(95)00146-8.

    Article  CAS  Google Scholar 

  71. S.T. Lim, B. Forbes, G.P. Martin, M.B. Brown, In vivo and in vitro characterization of novel microparticulates based on hyaluronan and chitosan hydroglutamate, 2 (2001).

  72. Aguzzi C, Ortega A, Bonferoni MC, Sandri G, Cerezo P, Salcedo I, et al. Assessement of anti-inflammatory properties of microspheres prepared with chitosan and 5-amino salicylic acid over inflamed Caco-2 cells. Carbohydr Polym. 2011;85:638–44. https://doi.org/10.1016/j.carbpol.2011.03.027.

    Article  CAS  Google Scholar 

  73. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2012;64:49–60. https://doi.org/10.1016/j.addr.2012.09.024.

    Article  Google Scholar 

  74. Bukhari SMH, Khan S, Rehanullah M, Ranjha NM. Synthesis and characterization of chemically cross-linked acrylic acid/gelatin hydrogels: effect of pH and composition on swelling and drug release. Int J Polym Sci. 2015;2015:1–15. https://doi.org/10.1155/2015/187961.

    Article  CAS  Google Scholar 

  75. Duan H, Lu S, Qin H, Gao C, Bai X, Wei Y, et al. Co-delivery of zinc and 5-aminosalicylic acid from alginate/N-succinyl-chitosan blend microspheres for synergistic therapy of colitis. Int J Pharm. 2017;516:214–24. https://doi.org/10.1016/j.ijpharm.2016.11.036.

    Article  CAS  PubMed  Google Scholar 

  76. Wang QS, Wang GF, Zhou J, Gao LN, Cui YL. Colon targeted oral drug delivery system based on alginate-chitosan microspheres loaded with icariin in the treatment of ulcerative colitis. Int J Pharm. 2016;515:176–85. https://doi.org/10.1016/j.ijpharm.2016.10.002.

    Article  CAS  PubMed  Google Scholar 

  77. Ramadass SK, Perumal S, Jabaris SL, Madhan B. Preparation and evaluation of mesalamine collagen in situ rectal gel: a novel therapeutic approach for treating ulcerative colitis. Eur J Pharm Sci. 2013;48:104–10. https://doi.org/10.1016/j.ejps.2012.10.015.

    Article  CAS  PubMed  Google Scholar 

  78. Jr SBA, Nettles DL, Ph D, Setton LA. Author manuscript. J Biomed Mater Res Part B Appl Biomater. 2010:1–14. https://doi.org/10.1002/jbm.b.31289.Release.

  79. Mura C, Nácher A, Merino V, Merino-Sanjuan M, Carda C, Ruiz A, et al. N-Succinyl-chitosan systems for 5-aminosalicylic acid colon delivery: in vivo study with TNBS-induced colitis model in rats. Int J Pharm. 2011;416:145–54. https://doi.org/10.1016/j.ijpharm.2011.06.025.

    Article  CAS  PubMed  Google Scholar 

  80. Bai XY, Yan Y, Wang L, Zhao LG, Wang K. Novel pH-sensitive hydrogels for 5-aminosalicylic acid colon targeting delivery: in vivo study with ulcerative colitis targeting therapy in mice. Drug Deliv. 2015;0:1–7. https://doi.org/10.3109/10717544.2014.996924.

    Article  CAS  Google Scholar 

  81. Ju E, Park K, Su K, Kim J, Yang J, Kong J, et al. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J Control Release. 2010;141:2–12. https://doi.org/10.1016/j.jconrel.2009.09.010.

    Article  CAS  Google Scholar 

  82. Kim KS, Park SJ, Yang J, Jeon J, Bhang SH, Kim B, et al. Acta Biomaterialia injectable hyaluronic acid–tyramine hydrogels for the treatment of rheumatoid arthritis. Acta Biomater. 2011;7:666–74. https://doi.org/10.1016/j.actbio.2010.09.030.

    Article  CAS  PubMed  Google Scholar 

  83. J. Kim, I. Sook, T. Hyung, K. Back, S. Jung, G. Tae, I. Noh, S. Hoon, Y. Park, K. Sun, Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells, 28 (2007) 1830–1837. doi:https://doi.org/10.1016/j.biomaterials.2006.11.050.

  84. Jung HH, Park K, Han DK. Preparation of TGF-β 1-conjugated biodegradable pluronic F127 hydrogel and its application with adipose-derived stem cells. J Control Release. 2010;147:84–91. https://doi.org/10.1016/j.jconrel.2010.06.020.

    Article  CAS  PubMed  Google Scholar 

  85. Manuscript A, Cells S, Hyaluronic U, Crosslinked D. NIH public access, vol. 32; 2012. p. 2466–78. https://doi.org/10.1016/j.biomaterials.2010.12.024.Controlling.

    Book  Google Scholar 

  86. Xiao B, Zhang Z, Viennois E, Kang Y, Zhang M, Han MK. Combination therapy for ulcerative colitis: orally targeted nanoparticles prevent mucosal damage and relieve inflammation. Theranostics. 2016;6 https://doi.org/10.7150/thno.15710.

  87. George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release. 2006;114:1–14. https://doi.org/10.1016/j.jconrel.2006.04.017.

    Article  CAS  PubMed  Google Scholar 

  88. Grellier M, Granja PL, Fricain JC, Bidarra SJ, Renard M, Bareille R, et al. The effect of the co-immobilization of human osteoprogenitors and endothelial cells within alginate microspheres on mineralization in a bone defect. Biomaterials. 2009;30:3271–8. https://doi.org/10.1016/j.biomaterials.2009.02.033.

    Article  CAS  PubMed  Google Scholar 

  89. K.M. Dupont, J.D. Boerckel, N. Huebsch, NIH public access, east 32 (2012) 65–74. doi:https://doi.org/10.1016/j.biomaterials.2010.08.074.An.

  90. Yu J, Du KT, Fang Q, Gu Y, Mihardja SS, Sievers RE, et al. The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials. 2010;31:7012–20. https://doi.org/10.1016/j.biomaterials.2010.05.078.

    Article  CAS  PubMed  Google Scholar 

  91. Dawlee S, Sugandhi A, Balakrishnan B, Labarre D, Jayakrishnan A. Oxidized chondroitin sulfate-cross-linked gelatin matrixes: a new class of hydrogels. Biomacromolecules. 2005;6:2040–8. https://doi.org/10.1021/bm050013a.

    Article  CAS  PubMed  Google Scholar 

  92. Barkat K, Ahmad M, Minhas MU, Khalid I. Oxaliplatin-loaded crosslinked polymeric network of chondroitin sulfate-co-poly(methacrylic acid) for colorectal cancer: its toxicological evaluation. J Appl Polym Sci. 2017;45312:45312. https://doi.org/10.1002/app.45312.

    Article  CAS  Google Scholar 

  93. You YC, Dong LY, Dong K, Xu W, Yan Y, Zhang L, et al. In vitro and in vivo application of pH-sensitive colon-targeting polysaccharide hydrogel used for ulcerative colitis therapy. Carbohydr Polym. 2015;130:243–53. https://doi.org/10.1016/j.carbpol.2015.03.075.

    Article  CAS  PubMed  Google Scholar 

  94. Birch NP, Birch NP, Barney LE, Pandres E, Peyton SR, Schi JD. Thermal-responsive behavior of a cell compatible chitosan/pectin hydrogel; 2015. https://doi.org/10.1021/acs.biomac.5b00425.

    Book  Google Scholar 

  95. Ondeck MG, Engler AJ. Mechanical characterization of a dynamic and tunable methacrylated hyaluronic acid hydrogel. J Biomech Eng. 2016;138:21003. https://doi.org/10.1115/1.4032429.

    Article  Google Scholar 

  96. Hu J, Li HY, Williams GR, Yang HH, Tao L, Zhu LM. Electrospun poly(N-isopropylacrylamide)/ethyl cellulose nanofibers as thermoresponsive drug delivery systems. J Pharm Sci. 2016;105:1104–12. https://doi.org/10.1016/S0022-3549(15)00191-4.

    Article  CAS  PubMed  Google Scholar 

  97. Feng H, Zhang L, Zhu C. Genipin crosslinked ethyl cellulose-chitosan complex microspheres for anti-tuberculosis delivery. Colloids Surf B Biointerfaces. 2013;103:530–7. https://doi.org/10.1016/j.colsurfb.2012.11.007.

    Article  CAS  PubMed  Google Scholar 

  98. Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S. PLGA: a unique polymer for drug delivery. Ther Deliv. 2015;6:41–58. https://doi.org/10.4155/tde.14.91.

    Article  CAS  PubMed  Google Scholar 

  99. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3:1377–97. https://doi.org/10.3390/polym3031377.

    Article  CAS  Google Scholar 

  100. Ostroha JL, Lowman A, Dan N. PEG-based degradable networks for drug delivery applications. Chem Biol Eng Doctor of. 2006;165 http://hdl.handle.net/1860/842

  101. Kolate A, Baradia D, Patil S, Vhora I, Kore G, Misra A. PEG—a versatile conjugating ligand for drugs and drug delivery systems. J Control Release. 2014;192:67–81. https://doi.org/10.1016/j.jconrel.2014.06.046.

    Article  CAS  PubMed  Google Scholar 

  102. Zhao L, Liu M, Wang J, Zhai G. Chondroitin sulfate-based nanocarriers for drug/gene delivery. Carbohydr Polym. 2015;133:391–9. https://doi.org/10.1016/j.carbpol.2015.07.063.

    Article  CAS  PubMed  Google Scholar 

  103. Ramasamy T, Khandasamy US, Shanmugam S, Ruttala H. Formulation and evaluation of chondroitin sulphate tablets of aceclofenac for colon targeted drug delivery, Iran. J Pharm Res. 2012;11:465–79. https://doi.org/10.1590/S1984-82502011000200011.

    Article  CAS  Google Scholar 

  104. Davaran S, Rashidi MR, Khani A. Synthesis of chemically cross-linked hydroxypropyl methyl cellulose hydrogels and their application in controlled release of 5-amino salicylic acid. Drug Dev Ind Pharm. 2007;33:881–7. https://doi.org/10.1080/03639040601150278.

    Article  CAS  PubMed  Google Scholar 

  105. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2001;48:139–57. https://doi.org/10.1016/S0169-409X(01)00112-0.

    Article  CAS  PubMed  Google Scholar 

  106. Dasgupta A, Mondal JH, Das D. Peptide hydrogels. RSC Adv. 2013;3:9117–49. https://doi.org/10.1039/c3ra40234g.

    Article  CAS  Google Scholar 

  107. Aytac Z, Sen HS, Durgun E, Uyar T. Sulfisoxazole/cyclodextrin inclusion complex incorporated in electrospun hydroxypropyl cellulose nanofibers as drug delivery system. Colloids Surf B Biointerfaces. 2015;128:331–8. https://doi.org/10.1016/j.colsurfb.2015.02.019.

    Article  CAS  PubMed  Google Scholar 

  108. S. Poh, J.B. Lin, A. Panitch, Release of anti-inflammatory peptides from thermosensitive nanoparticles with degradable cross-links suppresses pro-inflammatory cytokine production, (2015). doi:https://doi.org/10.1021/bm501849p.

  109. Singh B, Sharma N, Chauhan N. Synthesis, characterization and swelling studies of pH responsive psyllium and methacrylamide based hydrogels for the use in colon specific drug delivery. Carbohydr Polym. 2007;69:631–43. https://doi.org/10.1016/j.carbpol.2007.01.020.

    Article  CAS  Google Scholar 

  110. Bezzio C, Fascì-Spurio F, Viganò C, Meucci G, Papi C, Saibeni S. The problem of adherence to therapy in ulcerative colitis and the potential utility of multi-matrix system (MMX) technology. Expert Rev Gastroenterol Hepatol. 2017;11:33–41. https://doi.org/10.1080/17474124.2017.1256200.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Higher Education Commission of Pakistan for the financial support through Project No. 21-487/SRGP/R&D/HEC/2015. This study became possible due to the support of the Higher Education Commission of Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sohail.

Ethics declarations

Conflict of interest

The authors reported that they have no conflict of interest in the present research work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohail, M., Mudassir, Minhas, M.U. et al. Natural and synthetic polymer-based smart biomaterials for management of ulcerative colitis: a review of recent developments and future prospects. Drug Deliv. and Transl. Res. 9, 595–614 (2019). https://doi.org/10.1007/s13346-018-0512-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-018-0512-x

Keywords

Navigation