Advertisement

Polymer-wrapped single-walled carbon nanotubes: a transformation toward better applications in healthcare

  • Mazzura Wan Chik
  • Zahid Hussain
  • Mohd Zulkefeli
  • Minaketan Tripathy
  • Sunil Kumar
  • Abu Bakar Abdul Majeed
  • K. Byrappa
Review Article
  • 106 Downloads

Abstract

Carbon nanotubes (CNTs) possess outstanding properties that could be useful in several technological, drug delivery, and diagnostic applications. However, their unique physical and chemical properties are hindered due to their poor solubility. This article review’s the different ways and means of solubility enhancement of single-wall carbon nanotubes (SWNTs). The advantages of SWNTs over the multi-walled carbon nanotubes (MWNTs) and the method of non-covalent modification for solubility enhancement has been the key interest in this review. The review also highlights a few examples of dispersant design. The review includes some interesting utility of SWNTs being wrapped with polymer especially in biological media that could mediate proper drug delivery to target cells. Further, the use of wrapped SWNTs with phospholipids, nucleic acid, and amphiphillic polymers as biosensors is of research interest. The review aims at summarizing the developments relating to wrapped SWNTs to generate further research prospects in healthcare.

Keywords

Carbon nanotubes Single-wall carbon nanotubes Superhydrophobicity Polymer wrapping Solubility enhancers Targeted drug delivery 

Notes

Acknowledgments

The authors would like to acknowledge the Ministry of Higher Education (MOHE) Malaysia for Fundamental Research Grant Scheme (600-RMIA/FRGS 5/3 (4/2014)) and Universiti Teknologi MARA for providing support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363:605–6.CrossRefGoogle Scholar
  2. 2.
    Hodkiewicz J. Characterizing Carbon Materials with Raman Spectroscopy. Scientific TF.Google Scholar
  3. 3.
    Ma PC, Siddiqui NA, Marom G, Kim JK. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf. 2010;41(10):1345–67.CrossRefGoogle Scholar
  4. 4.
    Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev. 2006;106:1105−1136.CrossRefGoogle Scholar
  5. 5.
    Kayat J, Gajbhiye V, Tekade RK, Jain NK. Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine. 2011;7(1):40–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Dresselhaus S. Physics Of Carbon Nanotubes. 1995;33(7):883–91.Google Scholar
  7. 7.
    De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and future commercial applications. Science. 2013;339(6119):535–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Britz DA, Khlobystov AN. Noncovalent interactions of molecules with single walled carbon nanotubes. Chem Soc Rev. 2006;35(7):637–59.PubMedCrossRefGoogle Scholar
  9. 9.
    Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, et al. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett. 2014;9(1):393.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Cui D, Tian F, Ozkan CS, Wang M, Gao H. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett. 2005;155(1):73–85.PubMedCrossRefGoogle Scholar
  11. 11.
    Bottini M, Brucknera S, Nika K, Bottini N, Bellucci S, Magrinic A, et al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett. 2006;160(2):121–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Apartsin EK, Buyanova MY, Novopashina DS, Ryabchikova EI, Filatov AV, Zenkova MA, et al. Novel multifunctional hybrids of single-walled carbon nanotubes with nucleic acids: synthesis and interactions with living cells. ACS Appl Mater Interfaces. 2014;6(3):1454–61.PubMedCrossRefGoogle Scholar
  13. 13.
    Abanulo DC, Papadimitrakopoulos F. Isotopically induced variation in the stability of FMN-wrapped carbon nanotubes. ACS Langmuir. 2013;29:7209–15.CrossRefGoogle Scholar
  14. 14.
    Lobez JM, Afzali A. Surface-selective directed assembly of carbon nanotubes using side-chain functionalized poly(thiophene)s. Chem Mater. 2013;25(18):3662–6.CrossRefGoogle Scholar
  15. 15.
    Xu L, Ye Z, Siemann S, Gu Z. Noncovalent solubilization of multi-walled carbon nanotubes in common low-polarity organic solvents with branched Pd-diimine polyethylenes: effects of polymer chain topology, molecular weight and terminal pyrene group. Polym (United Kingdom). 2014;55(14):3120–9.Google Scholar
  16. 16.
    Zhao W, Song C, Pehrsson PE, Di VC, Na V. Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J Am Chem Soc. 2002:12418–9.Google Scholar
  17. 17.
    Dai H. Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res. 2002;35(12):1035–44.PubMedCrossRefGoogle Scholar
  18. 18.
    Rinzler AG, Liu J, Dai H. Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A Mater Sci Process. 1998;67(1):29–37.CrossRefGoogle Scholar
  19. 19.
    Src V, Govindaraj A. A new method of preparing single-walled carbon nanotubes. Proc Indian Acad Sci (Chem Sci). 2003;115:509–18.CrossRefGoogle Scholar
  20. 20.
    Chen Y, Zhang J. Chemical vapor deposition growth of single-walled carbon nanotubes with controlled structures for nanodevice applications. Acc Chem Res. 2014;47(8):2273–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Hou PX, Li WS, Zhao SY, Li GX, Shi C, Liu C, et al. Preparation of metallic single-wall carbon nanotubes by selective etching. ACS Nano. 2014;8(7):7156–62.PubMedCrossRefGoogle Scholar
  22. 22.
    Kataura H, Kumazawa Y, Maniwa Y, Ohtsuka Y, Sen R, Suzuki S. Diameter control of single-walled carbon nanotubes. Carbon. 2000;38:1691–7.CrossRefGoogle Scholar
  23. 23.
    Yu S, Devaux X, Mcrae E, Yu S, Tsareva, Devaux XA, McRae EA, Aranda LA, Gregoire B, Carteret C, Dossot M, Lamouroux V, Fort S, Humbert B, Mevellec JY. A step towards controlled-diameter single walled carbon nanotubes. Carbon 67 2013;7: 753–765.Google Scholar
  24. 24.
    Roy S, Bajpai R, Soin N, Sinha S, Mclaughlin JA, Misra DS. Applied surface science diameter control of single wall carbon nanotubes synthesized using chemical vapor deposition. Appl Surf Sci. 2014;321:70–9.CrossRefGoogle Scholar
  25. 25.
    Yudasaka M, Kataura H, Ichihashi T, Qin L-C, Kar S, Iijima S. Diameter enlargement of HiPco single-wall carbon nanotubes by heat treatment. Nano Lett. 2001;1(9):487–9.CrossRefGoogle Scholar
  26. 26.
    Yudasaka M, Ichihashi T, Kasuya D, Kataura H. Iijima S, Structure changes of single-wall carbon nanotubes and single-wall carbon nanohorns caused by heat treatment. 2003;41:1273–80.Google Scholar
  27. 27.
    Yudasaka M, Ajima K, Suenaga K, Ichihashi T, Hashimoto A, Iijima S. Nano-extraction and nano-condensation for C60 incorporation into single-wall carbon nanotubes in liquid phases. Chem Phys Lett. 2003;380(1–2):42–6.CrossRefGoogle Scholar
  28. 28.
    Jiang Y, Li H, Li Y, Yu H, Liew KM, He Y, et al. Helical encapsulation of graphene nanoribbon into carbon nanotube. ACS Nano. 2011;5(3):2126–33.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhang ZS, Kang Y, Liang LJ, Liu YC, Wu T, Wang Q. Peptide encapsulation regulated by the geometry of carbon nanotubes. Biomaterials. 2014;35(5):1771–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Ajima K, Yudasaka M, Murakami T, Maigne A, Shiba K, Iijima S. Carbon Nanohorns as anticancer drug carriers. ACS. Mol Pharm. 2005;2(6):475–80.PubMedCrossRefGoogle Scholar
  31. 31.
    Arsawang U, Saengsawang O, Rungrotmongkol T, et al. How do carbon nanotubes serve as carriers for gemcitabine transport in a drug delivery system? J Mol Graph Model. 2011;29(5):591–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Albini A, Mussi V, Parodi A, Ventura A, Principi E, Tegami S, et al. Interactions of single-wall carbon nanotubes with endothelial cells. Nanomedicine Nanotechnology, Biol Med. 2010;6(2):277–88.CrossRefGoogle Scholar
  33. 33.
    Wu CH, Cao C, Kim JH, Hsu CH, Wanebo HJ, Bowen WD, et al. Trojan-horse nanotube on-command intracellular drug delivery. Nano Lett. 2012;12(11):5475–80.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Klumpp C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta. 2006;1758(3):404–12.PubMedCrossRefGoogle Scholar
  35. 35.
    Chen M, Design YM. Development of fluorescent nanostructures for bioimaging. Prog Polym Sci. 2014;39(2):365–95.CrossRefGoogle Scholar
  36. 36.
    Ma Y, Ali SR, Dodoo AS, He H. Enhanced sensitivity for biosensors: multiple functions of DNA-wrapped single-walled carbon nanotubes in self-doped polyaniline nanocomposites. J Phys Chem B. 2006;110(33):16359–65.PubMedCrossRefGoogle Scholar
  37. 37.
    Gong H, Peng R, Liu Z. Carbon nanotubes for biomedical imaging: the recent advances. Adv Drug Deliv Rev. 2013;65(15):1951–63.PubMedCrossRefGoogle Scholar
  38. 38.
    Berdjeb L, Pelletier É, Pellerin J, Gagné J, Lemarchand K. Contrasting responses of marine bacterial strains exposed to carboxylated single-walled carbon nanotubes. Aquat Toxicol. 2013;144-145:230–41.PubMedCrossRefGoogle Scholar
  39. 39.
    Kesharwani P, Ghanghoria R, Jain NK. Carbon nanotube exploration in cancer cell lines. Drug Discov Today. 2012;17(17–18):1023–30.PubMedCrossRefGoogle Scholar
  40. 40.
    Heister E, Neves S, Lamprecht C, Silva SRP, Coley HM, McFadden J. Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes. Carbon. 2012:622–32.Google Scholar
  41. 41.
    Panchapakesan B, Lu S, Sivakumar K, Teker K, Cesarone G, Wickstrom E. Single-wall carbon nanotube nanobomb agents for killing breast cancer cell. NanoBiotechnology. 2005:133–40.Google Scholar
  42. 42.
    Storm PB, Moriarity JL, Tyler B, Burger PC, Brem H, Weingart J. Polymer delivery of camptothecin against 9L gliosarcoma : release, distribution, and efficacy. J Neuro-Oncol. 2002;56:209–17.CrossRefGoogle Scholar
  43. 43.
    Kawano K, Watanabe M, Yamamoto T, Yokoyama M, Opanasopit P, Okano T, et al. Enhanced antitumor effect of camptothecin loaded in long-circulating polymeric micelles. J Control Release. 2006;112(3):329–32.PubMedCrossRefGoogle Scholar
  44. 44.
    Lee PC, Chiou YC, Wong JM, Peng CL, Shieh MJ. Targeting colorectal cancer cells with single-walled carbon nanotubes conjugated to anticancer agent SN-38 and EGFR antibody. Biomaterials. 2013;34(34):8756–65.PubMedCrossRefGoogle Scholar
  45. 45.
    Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, et al. Drug delivery with carbon nanotubes for In vivo cancer treatment. American Association for Cancer Research. 2008;68(16):6652–60.CrossRefGoogle Scholar
  46. 46.
    Gholamine B, Karimi I, Salimi A, Mazdarani P, Becker Le. Neurobehavioral toxicity of carbon nanotubes in mice: focus on brain derived neurotrophic factor messenger RNA and protein. Toxicol Ind Health 2016:1–11.Google Scholar
  47. 47.
    Kayat J, Gajbhiye V, Tekade RK, Jain NK. Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine. 2011;7:40–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Toyokuni S, Jiang L, Kitaura R, Shinohara H. Minimal inflammogenicity of pristine single-wall carbon nanotubes. Nagoya J Med Sci. 2015;77:195–202.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Chen HH, Lucas JA, Chen M. Effect of carbon nanotubes on Chinese hamster ovarian cells. Nanotech. 2011;6:513–6.Google Scholar
  50. 50.
    Donkor D, Tang XS. Tube length and cell type-dependent cellular responses to ultra-short single-walled carbon nanotube. Biomaterials. 2014;35(9):3121–31.PubMedCrossRefGoogle Scholar
  51. 51.
    Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, et al. Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett. 1999;309:165–70.CrossRefGoogle Scholar
  52. 52.
    Nakamura M, Tahara Y, Murakami T, Iijima S, Yudasaka M. Gastrointestinal actions of orally-administered single-walled carbon nanohorns. Carbon. N Y. 2014;69:409–16.Google Scholar
  53. 53.
    Han B, Zhang M, Tang T, Zheng Q, Wang K, Li L, Chen W. The Long-Term Fate and Toxicity of PEG-Modified Single-Walled Carbon Nanotube Isoliquiritigenin Delivery. Journal of nanomaterials 2014. doi.org/10.1155/2014/257391.
  54. 54.
    Kang S, Pinault M, Pfefferle LD, Elimelech M. Single-walled carbon nanotubes exhibit strong antimicrobial activity. ACS Langmuir. 2007;14:8670–3.CrossRefGoogle Scholar
  55. 55.
    Nagarajan R. ACS symposium series. In Nanomaterials for Biomedicine. Washington, DC: American Chemical Society; 2012.Google Scholar
  56. 56.
    Yah CS, Simate GS. Nanoparticles as potential new generation broad spectrum antimicrobial agents. J Pharm Sci. 2015;23:43.Google Scholar
  57. 57.
    Dizaj SM, Mennati A, Jafari S, Khezri K. Adibkia K. Antimicrobial Activity of Carbon-Based Nanoparticles 2015;5(x) doi:105681/apb. 2015:003.Google Scholar
  58. 58.
    Arias LR, Yang L. Inactivation of bacterial pathogens by carbon nanotubes in suspensions. ACS Langmuir. 2009;22:3003–12.CrossRefGoogle Scholar
  59. 59.
    Pasquini LM, Hashmi SM, Sommer TJ, Elimelech M, Zimmerman JB. Impact of surface functionalization on bacterial cytotoxicity of single-wall carbon nanotubes. Environment Science Technology. 2012;46:6297–305.CrossRefGoogle Scholar
  60. 60.
    Dosunmu E, Chaudhari AA, Singh SR, Dennis VA, Pillai SR. Silver-coated acrbon nanotubes downregulate the expression of Pseudomonas aeruginosa virulence genes: a potential mechanism for their antimicrobial effect. Int J Nanomedicine. 2015;10:5025–34.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Yang C, Mamouni J, Tang Y, Yang L. Antimicrobial activity of single-wall carbon nanotubes: length effect. ACS. Langmuir. 2010;26(20):16013–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Le TTA, McEvoy J, Khan E. The effect of single-walled carbon nanotubeson Escherichia coli: multiple indicators of viability. J Nanopart Res. 2015;17(32)  https://doi.org/10.1007/s11051-014-2827-y.
  63. 63.
    Vecitis CD, Zodrow KR, Kang S, Elimelech M. Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. Am Chem Soc. 2010;4(9):5471–9.Google Scholar
  64. 64.
    Ghafari P, Denis CHS, Power ME, Jin X, Tsou Veronica, Mandal HS, Bols NC, Tang X. Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa. Nat Nanotechnol 2008; 3: 347–351.Google Scholar
  65. 65.
    Ncibi MC, Sillanpa. Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes. J Hazard Mater 2015; 298: 102–110.Google Scholar
  66. 66.
    Li S, Li H, Wang X, Song Y, Liu Y, Jiang L, et al. Super-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes. J Phys Chem B. 2002;106(36):9274–6.CrossRefGoogle Scholar
  67. 67.
    Yuan WZ, Mao Y, Zhao H, Sun JZ, Xu HP, Jin JK, et al. Electronic interactions and polymer effect in the functionalization and solvation of carbon nanotubes by pyrene- and ferrocene-containing poly ( 1-alkyne ) s. Macromolecules. 2008:701–7.Google Scholar
  68. 68.
    Duque JG, Cognet L, Parra-vasquez ANG, Nicholas N, Schmidt HK, Pasquali M. Stable luminescence from individual carbon nanotubes in acidic, basic, and biological environments. J Am Chem Soc. 2008;9:2626–33.CrossRefGoogle Scholar
  69. 69.
    Oh H, Sim J, Ju S. Binding affinities and thermodynamics of noncovalent functionalization of carbon nanotubes with surfactants. ACS Langmuir. 2013;29:11154–62.CrossRefGoogle Scholar
  70. 70.
    Karajanagi SS, Yang H, Asuri P, Sellitto E, Dordick JS, Kane RS. Protein-assisted Solubilization of single-walled carbon nanotubes. ACS Langmuir. 2006;25:1392–5.CrossRefGoogle Scholar
  71. 71.
    Mohamed M, Tripathy M, Majeed AA. Studies on the thermodynamics and solute–solvent interaction of polyvinyl pyrrolidone wrapped single walled carbon nanotubes (PVP-SWNTs) in water over temperature range 298.15–313.15K. Arab J Chem. 2013;Google Scholar
  72. 72.
    Shamsuddin SA, Halim NHA, Deraman N, Hashim U. The characterization study of functionalized multi-wall carbon nanotubes purified by acid oxidation. IEEE Reg Symp Micro Nano Electron. 2011;2011:263–5.Google Scholar
  73. 73.
    Ziegler KJ, Gu Z, Peng H, Flor EL, Hauge RH, Smalley RE. Controlled oxidative cutting of single-walled carbon nanotubes. J Am Chem Soc. 2005;39(8):1541–7.CrossRefGoogle Scholar
  74. 74.
    Chen J, Liu H, Weimer WA, Halls MD, Waldeck DH, Walker GC. Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J Am Chem Soc. 2002;124:9034–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Buffa F, Hu H, Resasco DE. Side-Wall functionalization of single-walled carbon nanotubes with 4-Hydroxymethylaniline followed by polymerization of ϵ -Caprolactone. Macromolecules. 2005;38:8258–63.CrossRefGoogle Scholar
  76. 76.
    Qin S, Qin D, Ford WT, Resasco DE, Herrera JE. Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules. 2004;37:752–7.CrossRefGoogle Scholar
  77. 77.
    Qu L, Lin Y, Hill DE, Zhou B, Wang W, Sun X, et al. Polyimide-functionalized carbon nanotubes: synthesis and dispersion in nanocomposite films. Macromolecules. 2004;37:6055–60.CrossRefGoogle Scholar
  78. 78.
    Yuan WZ, Sun JZ, Dong Y, 1ussler MH, Yang F, Xu HP, et al. Wrapping carbon nanotubes in pyrene-containing poly ( phenylacetylene) chains: solubility, stability, light emission, and surface photovoltaic properties. Macromolecules. 2006;39:8011–20.Google Scholar
  79. 79.
    White B, Banerjee S, O’Brien S, Turro NJ, Herman IP. Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J Phys Chem C. 2007;111(37):13684–90.CrossRefGoogle Scholar
  80. 80.
    Campbell JF, Tessmer I, Thorp HH, Erie DA, Hill C, Carolina N. Atomic force microscopy studies of DNA-wrapped carbon nanotube structure and binding to quantum dots. J Am Chem Soc. 2008;18:10648–55.CrossRefGoogle Scholar
  81. 81.
    Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, et al. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 2003;3(10):1379–82.CrossRefGoogle Scholar
  82. 82.
    O'Connel MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science. 2002;297:539–96.CrossRefGoogle Scholar
  83. 83.
    Star A, Stoddart JF. Dispersion and solubilization of single-walled carbon nanotubes with a hyperbranched polymer. Macromolecules. 2002;35(19):7516–20.CrossRefGoogle Scholar
  84. 84.
    Fujigaya T, Nakashima N. Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Sci Technol Adv Mater. 2015;16:1–21.CrossRefGoogle Scholar
  85. 85.
    Star A, Stoddart JF, Steuerman D, Diehl M, Boukai A, Wong EW, et al. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew Chem Int Ed. 2001;40(9):1721–5.CrossRefGoogle Scholar
  86. 86.
    O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang YH, Haroz E, et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett. 2001;342(3–4):265–71.CrossRefGoogle Scholar
  87. 87.
    Li Z, Guan H, Yu N, Xu Q, Imae I, Wei J. Modification on carbon nanotubes with assistance of supercritical carbon dioxide: chemical interaction, solubility, and light emission. J Phys Chem C. 2010;114:10119–25.CrossRefGoogle Scholar
  88. 88.
    Zhang F, Zhang H, Zhang Z, Chen Z, Xu Q. Modification of carbon nanotubes: water-soluble polymers nanocrystal wrapping to periodic patterning with assistance of supercritical CO2. Macromolecules. 2008;41:4519–23.CrossRefGoogle Scholar
  89. 89.
    Kang YK, Lee O, Deria P, Kim SH, Park TH, Bonnell DA, et al. Helical wrapping of single-walled carbon nanotubes by water soluble poly ( p -phenyleneethynylene ). Am Chem Soc. 2009;9:1414–8.Google Scholar
  90. 90.
    Caddeo C, Melis C, Colombo L, Mattoni A. Understanding the helical wrapping of poly (3-hexylthiophene) on carbon nanotubes. Society. 2010;114(49):21109–13.Google Scholar
  91. 91.
    Chung W, Nobusawa K, Kamikubo H, Kataoka M, Fujiki M, Naito M. Time-resolved observation of chiral-index-selective wrapping on single-walled carbon nanotube with non-aromatic polysilane. J Am Chem Soc. 2013;135(6):2374–83.PubMedCrossRefGoogle Scholar
  92. 92.
    Deria P, Von Bargen CD, Olivier J-H, Kumbhar AS, Saven JG, Therien MJ. Single-handed helical wrapping of single-walled carbon nanotubes by chiral, ionic, semiconducting polymers. J Am Chem Soc. 2013;135(43):16220–34.PubMedCrossRefGoogle Scholar
  93. 93.
    Mao X, Rutledge GC, Hatton TA. Polyvinylferrocene for noncovalent dispersion and redox- controlled precipitation of carbon nanotubes in nonaqueous media. ACS Langmuir. 2013;29:9626–34.CrossRefGoogle Scholar
  94. 94.
    Liu J, Moo-Young J, McInnis M, Pasquinelli M a., Zhai L. Conjugated polymer assemblies on carbon nanotubes. Macromolecules 2014;47(2):705–712.Google Scholar
  95. 95.
    Liang S, Zhao Y, Adronov A. Selective and reversible noncovalent functionalization of single-walled carbon nanotubes by a pH-responsive vinylogous tetrathiafulvalene-fluorene copolymer. J Am Chem Soc. 2014;136(3):970–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Mohamed M, Shah SA, Mohamed R, Majeed ABA, Tripathy MK. Solute solvent interactions of polyvinyl pyrrolidone wrapped single walled carbon nanotubes (PVP-SWNTs) in water by viscometric studies. Orient J Chem. 2013;29(2):539–44.CrossRefGoogle Scholar
  97. 97.
    Mohamed M, Affendi MMMMR, Zulkefeli M, Majeed a B a, Tripathy MK. Solute solvent interactions of polyvinyl pyrrolidone wrapped single walled carbon nanotubes (PVP-SWNTs) in water by acoustic studies. J Nanofluids. 2013;2(2):140–6.CrossRefGoogle Scholar
  98. 98.
    Takahashi O, Kohno Y, Nishio M. Relevance of weak hydrogen bonds in the conformation of organic compounds and bioconjugates: evidence from recent experimental data and high-level ab initio MO calculations. Chem Rev. 2010;110(10):6049−6076.CrossRefGoogle Scholar
  99. 99.
    Moore TL, Pitzer JE, Podila R, Wang X, Lewis RL, Grimes SW, et al. Multifunctional polymer-coated carbon nanotubes for safe drug delivery. Materials views. 2013;30:365–73.Google Scholar
  100. 100.
    Koh B, Kim G, Yoon HK, Park JB, Kopelman R. Fluorophore and dye-assisted dispersion of carbon nanotubes in aqueous solution. ACS Langmuir. 2012;28:11676–86.CrossRefGoogle Scholar
  101. 101.
    Chen J, Chen S, Zhao X, Kuznetsova LV, Wong SS, Ojima I. Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J Am Chem Soc. 2008;19:16778–85.CrossRefGoogle Scholar
  102. 102.
    Kosuge H, Sherlock SP, Kitagawa T, Dash R, Robinson JT, Dai H, et al. Near infrared imaging and photothermal ablation of vascular inflammation using single-walled carbon nanotubes. J Am Heart Assoc. 2012;1(6):e002568.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Huang X, El-sayed IH, Qian W, El-sayed MA. Cancer cell imaging and Photothermal therapy in the near-infrared region by using gold Nanorods. J Am Chem Soc. 2006;3:2115–20.CrossRefGoogle Scholar
  104. 104.
    Focke PJ, Wang X, Larsson HP. Neurotransmitter transporters: structure meets function. Structure. 2013;21(5):694–705.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Kruss S, Landry MP, Vander EE, Lima BMA, Reuel NF, Zhang J, et al. Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors. J Am Chem Soc. 2014;136:713−724.CrossRefGoogle Scholar
  106. 106.
    Son SJ, Bai X, Lee SB. Inorganic hollow nanoparticles and nanotubes in nanomedicine part 2 : imaging, diagnostic, and therapeutic applications. Drug Discov Today. 2007;12(August):657–63.PubMedCrossRefGoogle Scholar
  107. 107.
    Hashida Y, Tanaka H, Zhou S, Kawakami S, Yamashita F, Murakami T, et al. Photothermal ablation of tumor cells using a single-walled carbon nanotube-peptide composite. J Control Release. 2014;173:59–66.PubMedCrossRefGoogle Scholar
  108. 108.
    Moon HK, Lee SH, Choi HC. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano. 2009;3(11):3707–13.PubMedCrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2018

Authors and Affiliations

  • Mazzura Wan Chik
    • 1
  • Zahid Hussain
    • 1
  • Mohd Zulkefeli
    • 2
  • Minaketan Tripathy
    • 1
    • 3
  • Sunil Kumar
    • 4
  • Abu Bakar Abdul Majeed
    • 3
  • K. Byrappa
    • 5
  1. 1.Laboratory Fundamental of Pharmaceutics, Faculty of PharmacyUniversity Teknologi MARA (UiTM)Bandar Puncak AlamMalaysia
  2. 2.Department of Pharmaceutical chemistry, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
  3. 3.Pharmaceutical Life Sciences Department, Faculty of PharmacyUniversity Teknologi MARA (UiTM)Bandar Puncak AlamMalaysia
  4. 4.ICAR-NBAIMKushmaurIndia
  5. 5.Mangalore UniversityMangaloreIndia

Personalised recommendations