Skip to main content

Advertisement

Log in

pH-responsive calcium alginate hydrogel laden with protamine nanoparticles and hyaluronan oligosaccharide promotes diabetic wound healing by enhancing angiogenesis and antibacterial activity

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Diabetic wounds as chronic wounds represent a severe, persistent complication of diabetes and, in the most extreme cases, can lead to amputation. Two critical and unfavorable factors affecting diabetic wound healing are sustained bacterial-induced chronic inflammation and disrupted vascularization. In this paper, we presented a novel, pH-responsive calcium alginate hydrogel laden with protamine nanoparticles and hyaluronan oligosaccharides, and explored its potential for accelerating diabetic wound healing. A thorough investigation indicated that the drug- and nanoparticle-loaded hydrogel demonstrated strong bactericidal behavior mediated by protamine nanoparticles and reduced bacterial-induced chronic inflammation at the wound site. Furthermore, it accelerated the wound-healing process by promoting angiogenesis in skin wounds with the hyaluronan oligosaccharide-mediated enhanced expression of vascular endothelial growth factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14.

    Article  CAS  PubMed  Google Scholar 

  2. Wang X, Sng MK, Foo S, Chong HC, Lee WL, Tang MBY, et al. Early controlled release of peroxisome proliferator-activated Receptorbeta/delta agonist GW501516 improves diabetic wound healing through redox modulation of wound microenvironment. J Control Release. 2015;197:138–47.

    Article  CAS  PubMed  Google Scholar 

  3. Gao M, Nguyen TT, Suckow MA, Wolter WR, Gooyit M, Mobashery S, et al. Acceleration of diabetic wound healing using a novel protease-anti-protease combination therapy. Proc Natl Acad Sci U S A. 2015;112(49):15226–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Erba P, Ogawa R, Ackermann M, Adini A, Miele LF, Dastouri P, et al. Angiogenesis in wounds treated by microdeformational wound therapy. Ann Surg. 2011;253(2):402–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Greene AK, Puder M, Roy R, Arsenault D, Kwei S, Moses MA, et al. Microdeformational wound therapy: effects on angiogenesis and matrix metalloproteinases in chronic wounds of 3 debilitated patients. Ann Plast Surg. 2006;56(4):418–22.

    Article  CAS  PubMed  Google Scholar 

  6. Peng C, Chen B, Kao HK, Murphy G, Orgill DP, Guo L. Lack of fgf-7 further delays cutaneous wound healing in diabetic mice. Plast Reconstr Surg. 2011;128(6):673e–84e.

    Article  CAS  PubMed  Google Scholar 

  7. Kirketerp-Møller K, Jensen PØ, Fazli M, et al. Distribution, organization, and ecology of bacteria in chronic wounds. J Clin Microbiol. 2008;46(8):2717–22.

    Article  PubMed  PubMed Central  Google Scholar 

  8. McArdle C, Lagan KM, McDowell DA. The pH of wound fluid in diabetic foot ulcers—the way forward in detecting clinical infection? Curr Diabetes Rev. 2014;10(3):177–81.

    Article  CAS  PubMed  Google Scholar 

  9. Schneider LA, Korber A, Grabbe S, Dissemond J. Influence of pH on wound-healing: a new perspective for wound-therapy? Arch Dermatol Res. 2007;298(9):413–20.

    Article  PubMed  Google Scholar 

  10. Chen H, Xing X, Tan H, Jia Y, Zhou T, Chen Y, et al. Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):287–95.

    Article  CAS  PubMed  Google Scholar 

  11. Chopra P, Nayak D, Nanda A, Ashe S, Rauta PR, Nayak B. Fabrication of poly(vinyl alcohol)-carrageenan scaffolds for cryopreservation: effect of composition on cell viability. Carbohydr Polym. 2016;147:509–16.

    Article  CAS  PubMed  Google Scholar 

  12. Park SY, Lee HU, Lee YC, Kim GH, Park EC, Han SH, et al. Wound healing potential of antibacterial microneedles loaded with green tea extracts. Mater Sci Eng C Mater Biol Appl. 2014;42:757–62.

    Article  CAS  PubMed  Google Scholar 

  13. Napavichayanun S, Amornsudthiwat P, Pienpinijtham P, Aramwit P. Interaction and effectiveness of antimicrobials along with healing-promoting agents in a novel biocellulose wound dressing. Mater Sci Eng C Mater Biol Appl. 2015;55:95–104.

    Article  CAS  PubMed  Google Scholar 

  14. Li JF, Fu XB, Sheng ZY, Sun TZ. Redistribution of epidermal stem cells in wound edge in the process of re-epithelialization. Zhonghua Yi Xue Za Zhi. 2003;83(3):228–31.

    PubMed  Google Scholar 

  15. Icli B, Nabzdyk CS, Lujan-Hernandez J, Cahill M, Auster ME, Wara AKM, et al. Regulation of impaired angiogenesis in diabetic dermal wound healing by microRNA-26a. J Mol Cell Cardiol. 2016;91:151–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu J, Zgheib C, Hu J, Wu W, Zhang L, Liechty KW. The role of microRNA-15b in the impaired angiogenesis in diabetic wounds. Wound Repair Regen. 2014;22(5):671–7.

    Article  PubMed  Google Scholar 

  17. Lim YC, Bhatt MP, Kwon MH, Park D, Na SH, Kim YM, et al. Proinsulin C-peptide prevents impaired wound healing by activating angiogenesis in diabetes. J Invest Dermatol. 2015;135(1):269–78.

    Article  PubMed  Google Scholar 

  18. Zhou K, Ma Y, Brogan MS. Chronic and non-healing wounds: the story of vascular endothelial growth factor. Med Hypotheses. 2015;85(4):399–404.

    Article  CAS  PubMed  Google Scholar 

  19. West DC, Hampson IN, Arnold F, Kumar S. Angiogenesis induced by degradation products of hyaluronic acid. Science. 1985;228(4705):1324–6.

    Article  CAS  PubMed  Google Scholar 

  20. West DC, Kumar S. The effect of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity. Exp Cell Res. 1989;183(1):179–96.

    Article  CAS  PubMed  Google Scholar 

  21. Sattar A, Rooney P, Kumar S, Pye D, West DC, Scott I, et al. Application of angiogenic oligosaccharides of hyaluronan increases blood vessel numbers in rat skin. J Invest Dermatol. 1994;103(4):576–9.

    Article  CAS  PubMed  Google Scholar 

  22. Montesano R, Kumar S, Orci L, Pepper MS. Synergistic effect of hyaluronan oligosaccharides and vascular endothelial growth factor on angiogenesis in vitro. Lab Investig. 1996;75(2):249–62.

    CAS  PubMed  Google Scholar 

  23. Xu Q, A S, Gao Y, Guo L, Creagh-Flynn J, Zhou D, et al. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Acta Biomater. 2018;75:63–74.

    Article  CAS  PubMed  Google Scholar 

  24. Xu Q, Guo L, A S, Gao Y, Zhou D, Greiser U, et al. Injectable hyperbranched poly(β-amino ester) hydrogels with on-demand degradation profile to match wound healing process. Chem Sci. 2018;9(8):2179–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pustam A, Smith C, Deering C, Grosicki KMT, Leng TY, Lin S, et al. Interactions of protamine with the marine bacterium, Pseudoalteromonas sp. NCIMB 2021. Lett Appl Microbiol. 2014;58(3):225–30.

    Article  CAS  PubMed  Google Scholar 

  26. Johansen C, Verheul A, Gram L, Gill T, Abee T. Protamine-induced permeabilization of cell envelopes of gram-positive and gram-negative bacteria. Appl Environ Microbiol. 1997;63(3):1155–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu M, Feng B, Shi Y, Su C, Song H, Cheng W, et al. Protamine nanoparticles for improving shRNA-mediated anti-cancer effects. Nanoscale Res Lett. 2015;10:134.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shen Y, Zhao L, Su C, Shi Y, Yang G, Liu X. Efficient nucleus-targeted delivery of gene by nuclear localization signal peptides-mediated nanoparticles. J Biomater Tissue Eng. 2016;6(11):924–30.

    Article  Google Scholar 

  29. Wang T, Zheng Y, Shen Y, et al. Chitosan nanoparticles loaded hydrogels promote skin wound healing through the modulation of reactive oxygen species. Artif Cells Nanomed Biotechnol 2017:1–12.

  30. Zhao L, Su R, Cui W, Shi Y, Liu L, Su C. Preparation of biocompatible heat-labile enterotoxin subunit B-bovine serum albumin nanoparticles for improving tumor-targeted drug delivery via heat-labile enterotoxin subunit B mediation. Int J Nanomedicine. 2014;9:2149–56.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang Q, Shi Y, Yang G, Zhao L. Sodium alginate coated chitosan nanoparticles enhance antitumor efficiency via smartly regulating drug release at different pH. J Biomater Tissue Eng. 2017;7(2):127–33.

    Article  Google Scholar 

  32. Moura LI, Dias AM, Suesca E, et al. Neurotensin-loaded collagen dressings reduce inflammation and improve wound healing in diabetic mice. Biochim Biophys Acta. 2014;1842(1):32–43.

    Article  CAS  PubMed  Google Scholar 

  33. Park S, Rich J, Hanses F, Lee JC. Defects in innate immunity predispose C57BL/6J-Leprdb/Leprdb mice to infection by Staphylococcus aureus. Infect Immun. 2009;77(3):1008–14.

    Article  CAS  PubMed  Google Scholar 

  34. Schierle CF, De la Garza M, Mustoe TA, Galiano RD. Staphy-lococcal biofilms impair wound healing by delaying reepithelialization in a murine cutaneous wound model. Wound Repair Regen. 2009;17(3):354–9.

    Article  PubMed  Google Scholar 

  35. Siddiqui AR, Bernstein JM. Chronic wound infection: facts and controversies. Clin Dermatol. 2010;28(5):519–26.

    Article  Google Scholar 

  36. Fazli M, Bjarnsholt T, Kirketerp-Møller K, Jørgensen A, Andersen CB, Givskov M, et al. Quantitative analysis of the cellular inflammatory response against biofilm bacteria in chronic wounds. Wound Repair Regen. 2011;19(3):387–91.

    Article  PubMed  Google Scholar 

  37. Hansen SL, Myers CA, Charboneau A, Young DM, Boudreau N. HoxD3 accelerates wound healing in diabetic mice. Am J Pathol. 2003;163(6):2421–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

English-language editing of this manuscript was provided by Journal Prep.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhao.

Ethics declarations

All animal studies were conducted according to the regulations for animal experimentation issued by the State Committee of Science and Technology of the People’s Republic of China.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zheng, Y., Shi, Y. et al. pH-responsive calcium alginate hydrogel laden with protamine nanoparticles and hyaluronan oligosaccharide promotes diabetic wound healing by enhancing angiogenesis and antibacterial activity. Drug Deliv. and Transl. Res. 9, 227–239 (2019). https://doi.org/10.1007/s13346-018-00609-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-018-00609-8

Keywords

Navigation