Drug Delivery and Translational Research

, Volume 3, Issue 1, pp 16–25 | Cite as

High efficiency intranasal drug delivery using Intravail® alkylsaccharide absorption enhancers

Review Article

Abstract

A new class of alkylsaccharide transmucosal delivery enhancement agents are described that overcome the principal limitations preventing broad acceptance of intranasal administration for many potential applications in systemic drug delivery, namely, poor transmucosal absorption and damage to the nasal mucosa. This review will describe recent developments in use of these excipients in human clinical trials and preclinical studies along with their chemical and pharmacological properties and explore commercial implications of the use of these excipients in introduction of new intranasal formulations of peptidic and nonpeptidic drugs.

Keywords

Intranasal Intravail® Alkylsaccharide Drug delivery Polysorbate Peptide Protein aggregation 

References

  1. 1.
    Hussain AA. Intranasal drug delivery. Adv Drug Deliv Rev. 1998;29:39–49.PubMedCrossRefGoogle Scholar
  2. 2.
    Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11:1–18.PubMedCrossRefGoogle Scholar
  3. 3.
    Illum L. Nasal drug delivery—possibilities, problems and solutions. J Control Rel. 2003;87:187–98.CrossRefGoogle Scholar
  4. 4.
    Illum L. Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol. 2004;56:3–17.PubMedCrossRefGoogle Scholar
  5. 5.
    Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC. Intranasal delivery: physicochemical and therapeutic aspects. Intl J Pharm. 2007;337:1–24.CrossRefGoogle Scholar
  6. 6.
    Pontiroli AE. Peptide hormones: review of current and emerging uses by nasal delivery. Adv Drug Deliv Rev. 1998;29:81–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Sayani AP, Chien YW. Systemic delivery of peptides and proteins across absorptive mucosae. Crit Rev Ther Drug Carrier Syst. 1996;13:85–184.PubMedGoogle Scholar
  8. 8.
    Song Y, Wang Y, Thakur R, Meidan VM, Michniak B. Mucosal drug delivery: membranes, methodologies, and applications. Crit Rev Ther Drug Carrier Syst. 2004;21:195–256.PubMedCrossRefGoogle Scholar
  9. 9.
    Grassin-Delyle S, Buenestado A, Naline E, Faisy C, Blouquit-Laye S, Couderc LJ, Le Guen M, Fischler M, Devillier P. Intranasal drug delivery: an efficient and non-invasive route for systemic administration: focus on opioids. Pharmacol Ther. 2012;134(3):366–79.PubMedCrossRefGoogle Scholar
  10. 10.
    Pires A, Fortunal A, Alves G, Falcão A. Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci. 2009;12(3):288–311.PubMedGoogle Scholar
  11. 11.
    Material Safety Data Sheet TEGOSOFT LSE 65 K SOFT Evonik Goldschmidt GmbH Version: 1.11 Date Issued: 01/21/2010 Goldschmidtstr. 100 Essen, 05 45127.Google Scholar
  12. 12.
    Kocher K, Wiegand HJ. Toxicology and dermatology. In: Balzer D, editor. Surfactant science series, Vol. 91, Non ionic surfactants: alkylpolyglucosides. New York: Marcel Dekker; 2000. p. 365–83.Google Scholar
  13. 13.
    Sucrose esters of fatty acids and sucroglycerides (WHO Food Additives Series 40), The forty-ninth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA) Geneva 1998. http://www.inchem.org/documents/jecfa/jecmono/v040je04.htm.
  14. 14.
    Gizurarson S, Gudbrandsson FK, Jónsson H, Bechgaard E. Intranasal administration of diazepam aiming at the treatment of acute seizures: clinical trials in healthy volunteers. Biol Pharm Bull. 1999;22(4):425–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Rifkin RA, Maggio ET, Dike S, Kerr DA, Levy M. n-Dodecyl-β-d-maltoside inhibits aggregation of human interferon-β-1b and reduces its immunogenicity. J Neuroimmune Pharmacol. 2011;6:158–62.PubMedCrossRefGoogle Scholar
  16. 16.
    Maggio ET. Use of excipients to control aggregation in peptide and protein formulations. J Excip Food Chem. 2010;1:40–9.Google Scholar
  17. 17.
    Federal Register: September 14, 2005 (Volume 70, Number 177)] Page 54281-54286 Alkyl (C10-C16) Polyglycosides; exemptions from the requirement of a tolerance.Google Scholar
  18. 18.
    Ha E, Wei Wang W, Wang YJ. Peroxide formation in polysorbate 80 and protein stability. J Pharm Sci. 2002;91:2252–64.PubMedCrossRefGoogle Scholar
  19. 19.
    Hamburger R, Azaz E, Donbrow M. Autoxidation of polyethylenic non-ionic surfactants and of polyethylene glycols. Pharm Acta Helv. 1975;50:10–7.PubMedGoogle Scholar
  20. 20.
    Jaeger J, Sorensen K, Wolff SP. Peroxide accumulation in detergents. J Biochem Biophys Methods. 1994;29:77–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Lam XM, Lai WG, Chan EK, Ling V, Hsu CC. Site-specific tryptophan oxidation induced by autocatalytic reaction of polysorbate 20 in protein formulation. Pharm Res. 2011;28:2543–55.PubMedCrossRefGoogle Scholar
  22. 22.
    Chen S-C, Eiting KT, Li AAW, Lamharz N. and Quay SC. Peptide drug permeation enhancement by select classes of lipids. 45th American Society for Cell Biology Meeting, December 10–14, 2005, San Francisco (late abstract).Google Scholar
  23. 23.
    Scotto-Lavino E, Easow J, Simon S, Roemer E. An in vitro model for the rapid screening of potential components and formulations for nasal drug delivery. In Vitro Cell Dev Biol. 2002;38:12A.Google Scholar
  24. 24.
    El-Shafy MA, Roemer E, de Meireles J, Biswas M, Quay SC. Permeability and cytotoxicity of macromolecules from nasal formulations using EpiAirway™ tissue model. AAPS Pharm Sci. 2001;3(3):S-58.Google Scholar
  25. 25.
    Chen S-C, Eiting KT, Li AAW, Lamharz N, Quay SC. Identification of tight junction modulating lipids. J Pharm Sci. 2009;98(2):606–19.CrossRefGoogle Scholar
  26. 26.
    Arnold JJ, Ahsan F, Meezan E, Pillion DJ. Correlation of tetradecylmaltoside induced increases in nasal peptide drug delivery with morphological changes in nasal epithelial cells. J Pharm Sci. 2004;93(9):2205–13.PubMedCrossRefGoogle Scholar
  27. 27.
    Cüreoğlu S, Akkus M, Osma U, Yaldiz M, Oktay F, Can B, Güven C, Tekın M, Merıç F. The effect of benzalkonium chloride on rabbit nasal mucosa in vivo: an electron microscopy study. Eur Arch Otorhinolaryngol. 2002;259:362–4.PubMedGoogle Scholar
  28. 28.
    Arnold JJ, Fyrberg MD, Meezan E, Pillion DJ. Reestablishment of the nasal permeability barrier to several peptides following exposure to the absorption enhancer tetradecyl-b-d-maltoside. J Pharm Sci. 2010;99(4):1912–20.PubMedGoogle Scholar
  29. 29.
    Ahsan F, Arnold J, Meezan E, Pillion DJ. Enhanced bioavailability of calcitonin formulated with alkylglycosides following nasal and ocular administration in rats. Pharm Res. 2001;18(12):1742–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Illum L. Nasal delivery. The use of animal models to predict performance in man. J Drug Target. 1996;3(6):427–42.PubMedCrossRefGoogle Scholar
  31. 31.
    Maggio ET, Meezan E, Ghambeer DKS, Pillion DJ. High bioavailability formulation of salmon calcitonin—potential opportunities for expanded use in analgesia. Drug Deliv Technol. 2010;10:58–63.Google Scholar
  32. 32.
    Krause D, Eddy P, Merutka G, MacDonald B. Intranasal (IN), pharmacokinetic (PK) and bioavailability of ZT-034 a parathyroid hormone (PTH) analog. ASBMR Poster Presentation Number: SU0405 September 13, 2009.Google Scholar
  33. 33.
    Eddy P, Krause D, Merutka G, MacDonald B. Intranasal (IN) pharmacokinetics (PK) and bioavailability of ZT-031, a novel parathyroid hormone (PTH) analog. ASBMR Poster Presentation Number: MO0385 September 14, 2009.Google Scholar
  34. 34.
    Neurelis announces positive results from phase 1 pharmacokinetic study of NRL-01 (intranasal diazepam) http://www.bizjournals.com/prnewswire/press_releases/2011/06/14/LA19174. Accessed 15April 2012.
  35. 35.
    Ivaturi VD, Riss JR, Kriel RL, Cloyd JC. Pharmacokinetics and tolerability of intranasal diazepam and midazolam in healthy adult volunteers. Acta Neurol Scand. 2009;120(5):353–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Ivaturi VD, Riss JR, Kriel RL, Siegel RA, Cloyd JC. Bioavailability and tolerability of intranasal diazepam in healthy adult volunteers. Epilepsy Res. 2009;84(2–3):120–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Li L, Nandi I, Kim KH. Development of an ethyl laurate-based microemulsion for rapid-onset intranasal delivery of diazepam. Int J Pharm. 2002;237(1–2):77–85.PubMedCrossRefGoogle Scholar
  38. 38.
    Maggio ET. Compositions for drug administration. US Patent Application 2010/0160378A1, June 24, 2010.Google Scholar
  39. 39.
    Waldrop MA, Grasso P. Intranasal delivery of mouse [D-Leu-4]-OB3, a synthetic peptide amide with leptin like activity, improves energy balance, glycemic control, insulin sensitivity, and bone formation in leptin-resistant C57BLK/6-m db/db mice. Diabetes, Obes Metab. 2010;12:871–5.CrossRefGoogle Scholar
  40. 40.
    Novakovic ZM, Leinung MC, Lee DW, Grasso P. Intranasal administration of mouse [D-Leu-4]OB3, a synthetic peptide amide with leptin-like activity, enhances total uptake and bioavailability in Swiss Webster mice when compared to intraperitoneal, subcutaneous, and intramuscular delivery systems. Regul Pept. 2009;154:107–11.PubMedCrossRefGoogle Scholar
  41. 41.
    Maggio ET. Intranasal administration of active agents to the central nervous system. US Pat App. 2011/0129462A1, June 2, 2011.Google Scholar
  42. 42.
    Lee DW, Leinung MC, Grasso P. OB3 Oral delivery of mouse [D-Leu-4]-OB3, a synthetic peptide amide with leptin-like activity, in male Swiss Webster mice: a study comparing the pharmacokinetics of oral delivery to intraperitoneal, subcutaneous, intramuscular, and intranasal administration. Regul Pept. 2010;160:129–32.PubMedCrossRefGoogle Scholar
  43. 43.
    Novakovic ZM, Leinung MC, Lee DW, Grasso P. Oral delivery of mouse [D-Leu-4]-OB3, a synthetic peptide amide with leptin-like activity, in male C57BL/6J wild-type and ob/ob mice: effects on energy balance, glycemic control and serum osteocalcin levels. Diabetes, Obes Metab. 2010;12:532–9.CrossRefGoogle Scholar
  44. 44.
    Maggio ET, Grasso P. Oral delivery of octreotide acetate in Intravail improves uptake, half-life, and bioavailability over subcutaneous administration in male Swiss Webster mice. Regul Pept. 2011;167:233–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Leinung MC, Grasso P. [D-Leu-4]-OB3, a synthetic peptide amide with leptin-like activity, augments the effects of orally delivered exenatide (Byetta®) and pramlintide (Symlin®) on energy balance and glycemic control in insulin-resistant male C57BLK/6-m db/db mice. Regulatory Peptides. 2012; in press.Google Scholar
  46. 46.
    Bennett JA, DeFreest L, Anaka I, Saadati H, Balulad S, Jacobson HI, Andersen TT. AFPep: an anti-breast cancer peptide that is orally active. Breast Cancer Res Treat. 2006;98:133–41.PubMedCrossRefGoogle Scholar
  47. 47.
    Andersen TT, Georgekutty J, DeFreest LA, Amaratunga G, Narendran A, Lemanski N, Jacobson HI, Bennett JA. An α-fetoprotein-derived peptide reduces the uterine hyperplasia and increases the antitumour effect of tamoxifen. Br J Cancer. 2007;97:327–33.PubMedCrossRefGoogle Scholar
  48. 48.
    DeFreest LA, Mesfin FB, Joseph L, McLeod DJ, Stallmer A, Reddy S, Balulad SS, Jacobson HI, Andersen TT, Bennett JA. Synthetic peptide derived from alpha-fetoprotein inhibits growth of human breast cancer: investigation of the pharmacophore and synthesis optimization. J Pept Res. 2004;63(5):409–19.PubMedCrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2012

Authors and Affiliations

  1. 1.Aegis Therapeutics, LLCSan DiegoUSA
  2. 2.University of Alabama at BirminghamBirminghamUSA

Personalised recommendations