Advertisement

VirusDisease

, Volume 29, Issue 1, pp 46–53 | Cite as

Rainfall and Chikungunya incidences in India during 2010–2014

  • Pratip Shil
  • Dilip R. Kothawale
  • Anakkathil B. Sudeep
Original Article

Abstract

Changing climate scenario has resulted in recent emergence and re-emergence of various arboviral diseases including Chikungunya. This disease is caused by Chikungunya virus (CHIKV), which belongs to Togaviridae family of viruses and spread by Aedes mosquitoes. A resurgence of CHIKV and its rapid global spread has been observed since 2004. The disease reemerged in India in 2005, after a gap of 32 years, causing massive outbreaks in some states and circulating thereafter. In the present paper we analyze CHIKV incidence data from India (2010–2014) with a view to understand association with environmental parameters, if any. Data on country-wide occurrences of CHIKV cases were considered from the National Vector Borne Disease Control Board, India. Meteorological data for different climatic subdivisions of India were obtained and processed mathematically. State-wise association of number of cases with rainfall, if any, were studied by statistical analyses. We observe that prevailing temperature range was favorable for CHIKV propagation and the occurrences were modulated by average rainfall. Most affected states were West Bengal, Maharashtra and Karnataka. Overall for India, favorable climatic conditions have contributed to incidences of CHIKV during the study period. There is strong positive association between rainfall variations and occurrence of CHIKV cases.

Keywords

Aedes Chikungunya Climate Rainfall Temperature 

Notes

Acknowledgements

Authors would like to thank Dr. D. T. Mourya, Director, National Institute of Virology, Pune and Dr. Krishna Kumar, Director, Indian Institute of Tropical Meteorology, Pune, India for their encouragement and support in facilitating the collaboration.

Supplementary material

13337_2018_428_MOESM1_ESM.docx (516 kb)
Supplementary material 1 (DOCX 516 kb)

References

  1. 1.
    Arankulle VA, Shrivastava S, Chrian S, Gunjikar RS, Walimbe AM, Jadhav SM, et al. Genetic divergence of chikungunya viruses in India (1963–2006) with special reference to the 2005–2006 explosive epidemic. J Gen Virol. 2007;88:1967–76.CrossRefGoogle Scholar
  2. 2.
    Barrett ADT. Economic burden of West Nile virus in the United States. Am J Trop Med Hyg. 2014;90(3):389–90.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bhatia R, Narain JP. Re-emerging Chikungunya fever: some lessons from Asia. Trop Med Int Health. 2009;14(8):940–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Biswas DK, Bhunia R, Basu M. Dengue fever in a rural area of West Bengal, India, 2012: an outbreak investigation. WHO South-East Asia J Public Health. 2014.  https://doi.org/10.4103/2224-3151.115828.Google Scholar
  5. 5.
    Burt FJ, Rolph MS, Rulli NE, Mahalingam S, Heise MT. Chikungunya: a re-emerging virus. Lancet. 2012;379:662–71.CrossRefPubMedGoogle Scholar
  6. 6.
    Calisher CH, Karabatsos N. Arbovirus serogroups: definition and geographic distribution. In: Monath TP, editor. The arboviruses: epidemiology and ecology, vol. I. Boca Raton: CRC Press; 1988. p. 19–58.Google Scholar
  7. 7.
    Caminade C, Medlock JM, Duchyne E, McIntyre KM, Leach S, Baylis M, et al. Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface. 2012;9:2708–17.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Campbell LP, Luther C, Moo-Llanes D, et al. Climate change influences on global distributions of dengue and chikungunya virus vectors. Phil Trans R Soc B. 2015;370:20140135.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Charrel RN, de Lamballerie X, Raoult D. Chikungunya outbreaks—the globalization ofvector borne diseases. New Engl J Med. 2007;356:769.CrossRefPubMedGoogle Scholar
  10. 10.
    Climate Atlases (2005):”Climate of Maharashtra”, “Climate of Karnataka” and “Climate of West Bengal” issued by National Climate Centre, Office of Additional Director General of Meteorology (research), Indian Meteorology Department HQ, Pune, India.Google Scholar
  11. 11.
    Dash AP, Bhatia R, Sunyoto T, Mourya DT. Emerging and re-emerging arboviral diseases in Southeast Asia. J Vector Borne Dis. 2013;50(2):77–84.PubMedGoogle Scholar
  12. 12.
    Delaunay P, Mathieu B, Marty P, Fauran P, Schaffner F. Chronology of the development of Aedes albopictus in the Alpes-Maritimes Department of France, from 2002 to 2005. Med Trop. 2007;67:310–1.Google Scholar
  13. 13.
    Dhimal M, Gautam I, Joshi HD, O’Hara RB, Ahrens B, Kuch U. Risk factors for the presence of chikungunya and dengue vectors (Aedes aegypti and Aedes albopictus), their altitudinal distribution and climatic determinants of their abundance in Central Nepal. PLoS Negl Trop Dis. 2015;9(3):e0003545.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Doty BE, Kinter JK III. Geophysical Data Analysis and Visualization using GrADS. In: Szuszczewicz EP, Bredekamp JH, editors. Visualization techniques in space and atmospheric sciences. Washington: NASA; 1995. p. 209–19.Google Scholar
  15. 15.
    Fischer D, Thomas SM, Niemitz F, Reineking B, Beierkuhnlein C. Projection of climatic suitability for Aedes albopictus Skuse (Culicidae) in Europe under climate change conditions. Glob Planet Change. 2011;78:54–64.CrossRefGoogle Scholar
  16. 16.
    Fischer D, Thomas SM, Suk JE, Hess A, Tjaden NB, Beierkuhnlein C, et al. Climate change effects on Chikungunya transmission in Europe: geospatial analysis of vector’s climatic suitability and virus’ temperature requirements. Int J Health Geogr. 2013;12:51.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gratz NG. Critical review of the vector status of Aedes albopictus. Med Vet Entomol. 2004;18:215–27.CrossRefPubMedGoogle Scholar
  18. 18.
    Hayes EB, Sejvar JJ, Zaki SR, Zaki SR, Lanciotti RS, Bode AV, et al. Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg Infect Dis. 2005;11(8):1174–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    http://nvbdcp.gov.in/chik-cd.html. Accessed on 1 March 2017.
  20. 20.
    https://data.gov.in/. Accessed on 1st April 2017.
  21. 21.
    http://www.tropmet.res.in/. Accessed on 1 April 2017.
  22. 22.
    Laras K, Sukri NC, Larasati RP, Bangs MJ, Kosim R, et al. Tracking the re-emergence of epidemic chikungunya virus in Indonesia. Trans R Soc Trop Med Hyg. 2005;99:128–41.CrossRefPubMedGoogle Scholar
  23. 23.
    Medlock JM, Hansford KM, Schaffner F, Versteirt V, Hendrickx G, Zeller H, et al. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis. 2012;12:435–47.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mills JN, Gage KL, Khan AS. Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan. Environ Health Perspect. 2010;118(11):1507–14.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mourya DT, Thakare JP, Gokhale MD, Powers AM, Hundekar SL, Jayakumar PC, et al. Isolation of Chikungunya virus from Aedes aegypti mosquitoes collected in the town of Yawat, Pune district, Maharashtra state, India. Acta Virol. 2001;45:305–9.PubMedGoogle Scholar
  26. 26.
    Mourya DT, Thakare JP, Gokhale MD, Powers AM, Hundekar SL, Jayakumar PC, et al. Isolation of Chikungunya virus from Aedes aegypti mosquitoes collected in the town of Yawat, Pune district, Maharashtra state, India. Acta Virol. 2001;45:305–9.PubMedGoogle Scholar
  27. 27.
    Pandey K, Pandey BD, Chaurasiya RR, Thakur M, Neupane B, Shah Y, et al. Evidence of Chikungunya virus circulation in the Terai region of Nepal in 2014 and 2015. Trans R Soc Trop Med Hyg. 2017;111(7):294–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Pastorino B, Muyembe-Tamfum JJ, Bessaud M, Tock F, Tolou H, Durand JP, et al. Epidemic resurgence of Chikungunya virus in Democratic Republic of the Congo: identification of a new central Africa strain. J Med Virol. 2004;74:277–82.CrossRefPubMedGoogle Scholar
  29. 29.
    Petersen LR, Powers AM. Chikungunya: epidemiology [version 1; referees: 2 approved] F1000 Research 2016, 5(F1000 Faculty Rev):82.Google Scholar
  30. 30.
    Powers AM, Brault AC, Tesh RB, Weaver SC. Re-emergence of chikungunya and O’nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J Gen Virol. 2000;81:471–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, et al. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet. 2007;370:1840–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Rogers DJ, Randolph SE. Climate change and vector-borne disease. Adv Parasitol. 2006;62:345–81.CrossRefPubMedGoogle Scholar
  33. 33.
    Schuffenecker I, Iteman I, Michault A, Michault A, Murri S, Frangeul L, et al. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med. 2006;3:1058–70.CrossRefGoogle Scholar
  34. 34.
    Semenza JC, Menne B. Climate change and infectious diseases in Europe. Lancet ID. 2009;9:365–75.CrossRefGoogle Scholar
  35. 35.
    Sudeep AB, Parashar D. Chikungunya: an overview. J Biosci. 2008;33(4):443–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Thiberville SD, Moyen N, Dupuis-Maguiraga L, Nouquerede Gould EA, Roques P, et al. Chikungunya fever: epidemiology, clinical syndrome, pathogenesis and therapy. Antivir Res. 2013;99:345–70.CrossRefPubMedGoogle Scholar
  37. 37.
    Thiessen AH, Alter JC. Climatological data for July 1911—District No. 10, Great Basin. Mon Weather Rev. 1911;39(7):1082–4.Google Scholar
  38. 38.
    Tilston N, Skelly C, Weinstein P. Pan-European Chikungunya surveillance: designing risk stratified surveillance zones. Int J Health Geogr. 2009;8:61.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tran A, L’Ambert G, LacourG Benoît R, Demarchi M, Cros M, et al. A rainfall- and temperature-driven abundance model for Aedes albopictus populations. Int J Environ Res Public Health. 2013;10:1698–719.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S. A single mutation in chikungunya virus affects vector specifi city and epidemic potential. PLoS Pathog. 2007;3:1895–906.CrossRefGoogle Scholar
  41. 41.
    Waldock J, Chandra NL, Lelieveld J, Proestos Y, Micheal E, Christophides G, et al. The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology. Pathog Glob Health. 2013;107(5):224–41.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Weaver SC, Osorio JE, Livengood JA, Chen R, Stinchcomb DT. Chikungunya virus and prospects for a vaccine. Expert Rev Vaccines. 2012;11(9):1087–101.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    WHO. Chikungunya disease: gaps and opportunities in public health and research in the Americas. Wkly Epidemiol Rec. 2015;42:571–6.Google Scholar
  44. 44.
    Yergolkar PN, Tandale BV, Arankalle VA, Sathe PS, Sudeep AB, Gandhe SS, et al. Chikungunya outbreaks caused by African genotype, India. Emerg Infect Dis. 2006;12(10):1580–3.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Indian Virological Society 2018

Authors and Affiliations

  • Pratip Shil
    • 1
  • Dilip R. Kothawale
    • 2
  • Anakkathil B. Sudeep
    • 1
  1. 1.National Institute of VirologyPuneIndia
  2. 2.Indian Institute of Tropical MeteorologyPuneIndia

Personalised recommendations